
www.manaraa.com

INFORMATION TO USERS

This manuscript, has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C o m p an y

3 0 0 N orth Z e e b R oad. Ann Arbor Ml 48106-1346 USA
3 1 3 /761-4700 8 0 0 /5 2 1 -0 6 0 0

www.manaraa.com

www.manaraa.com

O rder N um ber 93S3104

The interaction of com puter program debugging tools, field
dependence, and com puter program m ing languages in higher
education com puter language courses

Laverty, Joseph P., Jr., Ed.D.

University of Pittsburgh, 1993

Copyright ©1S93 by Laverty, Joseph P., J r . All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Aibor, MI 48106

www.manaraa.com

www.manaraa.com

THE INTERACTION 07 COMPUTER PROGRAM DEBUGGZMG TOOL8,
FIELD DEPENDENCE, AMD COMPUTER PROGRAMMING LANGUAGES IN HIGHER EDUCATION COMPUTER LANGUAGE COURSES

By
Joseph P. Laverty, Jr.
B.A. Duquesne University

M.B.A. Duquesene University

Submitted to the Graduate Faculty in the School
of Education in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy

University of Pittsburgh
1993

www.manaraa.com

FACULTY ENDORSEMENT AND FINAL REVIEW COMMITTEE

Faculty Member

School of Education

University of Pittsburgh

Dr. Barbara A. Seels
University of Pittsburgh

School of Education

4 f wJ jlJlcH hof=
■. J. Frederick GacfeDr.

University of Pittsburgh
School of Education

Pate

ii

www.manaraa.com

Copyright by Joseph P. Laverty
1993

iii

www.manaraa.com

THE INTERACTION OF COMPUTER PROGRAM DEBUGGING TOOLS,
FIELD DEPENDENCE, AND COMPUTER PROGRAMMING LANGUAGES

IN HIGHER EDUCATION COMPUTER LANGUAGE COURSES

Joseph P. Laverty, Ph.D.
University of Pittsburgh, 1993

This study explores the relationship between the interactive
and traditional program debugging tools, field dependence,
programming language and a student programmer's ability to locate
and correct logic errors in BASIC and COBOL computer programs.
The field dependence construct identifies field independent and
field dependent individuals by differentiating the techniques
they use to understand an element within the context of a given
problem. Research into field dependence strongly suggests that
this construct may effect the ability of an individual to perform
a program debugging task. It would appear that the use of the
interactive program debugger tool may provide a supplantation
function in facilitating the debugging process for field
dependent programmers.

Two intact groups of COBOL programming students (n=40) and
two intact groups of BASIC programming students (n=45) were
randomly selected and assigned to either the interactive or
traditional debugging treatments. Assignment of subjects as field
dependent, field independent, or indeterminate was based upon

iv

www.manaraa.com

their performance on the Group Embedded Figures Test. A program
debugging posttest, consisting of five programs, was administered
on a computer to students to measure the student's ability and
the amount of time to locate and correct program logic errors.
The total percentage score from three programming prerequisite
tests was used as a covariate in this study.

The findings from this study may be summarized as follows:
1) There were no statistically significant effects or

interactions between the student's ability or time to
correct program logic errors, and the use of program
debugging tools, field dependence or programming languages.

2) Programming prerequisite skills were significantly related
to the student's ability or time to correct program logic
errors.
Based upon the results of this study the following

recommendations can be made: (a) the use of traditional program
debugging tools is an adequate instructional tool and (b)
computer programming curricula should be designed to ensure that
students master syntactical and algorithmic programming skills.

v

www.manaraa.com

ACKNOWLEDGEMENTS

The author would like to express appreciation to the
members of his doctoral committee:

Dr. Louis Berry, Chairman, for providing a strong
foundation in psychology of human learning and his detailed
contributions to my summary of the findings and
recommendations for further research. His personal
encouragement to help me improve my research writing-style
will provide benefits beyond this study.

Dr. Michael Harwell for providing a thorough review and
his on-going counsel in the design of this study and
statistical proof of the findings. These detailed
contributions has made this study a very special learning
experience for the author.

Dr. Barbara Seels for her detailed review, comments and
constructive suggestions covering my search of the
literature and other topics.

Dr. J. Fred Gage for his detailed review and insights
provided by his experience in computer programming. These
comments ensure that the findings of this study would be of
practical significance for computer programming educators.

vi

www.manaraa.com

Special acknowledgement is expressed to my colleagues,
both faculty and staff, at Robert Morris College. Their
reviews, comments and suggestions ensured a comprehensive
and quality research study.

To my father and Rosie thank you for your support. To
my children: Patrick, Jonathan, Ian, Shawn and Micki, I
would like to thank them for their understanding and
patience. I will love them always.

Special thanks to my wife and best friend, Karen, for
her continuous support and love over the years that enabled
me to accomplish this personal goal in life.

As a final note, I would like to remember two
individuals who are no longer with us to enjoy this
accomplishment. Dr. William Faith, Ph.D., University of
Pittsburgh, will always be remembered as a researcher and
excellent educator. Hopefully, I can continue this fine
family tradition.

To my mother, Helen Jackson Laverty, I wish she was
here to share this accomplishment, the love of her
grandchildren and mine.

vii

www.manaraa.com

TABLE or CONTENTS
Page

ABSTRACT...................................... iv
ACKNOWLEDGEMENTS vi
LIST OF TABLES AND FIGURES..................... xi

I. INTRODUCTION
A. Importance of Computer Programming

Education in Higher Education . . 1
B. Possible Advantages of the

Interactive Program Debugger . . . 8
C. Purpose of the S t u d y10
D. Delimitations and Assumptions . . . 10
E. Research Questions......... 12
F. Definitions of T e r m s13

II. REVIEW OF LITERATURE
A. Introduction.................... 16
B. Computer Program Debugging 17
C. Problem Solving and

Short Term Memory23
D. Cognitive Style and

Programming...................... 25
E. Learner Control.................. 32
F. Orientation to the S t u d y 34

viii

www.manaraa.com

Page
III. RESEARCH METHODOLOGY

A. Problem Restated 38
B. Research Design..................38
C. Methodological Limitations 41
C. Subjects........................46
D. Instructional Materials 51
E. Procedures......................53
F. Instruments......................56
G. Data Analysis....................64

IV. RESEARCH FINDINGS
A. Introduction....................74
B. Demographic Profile 75
C. Descriptive Statistics

1. Prerequisite Tests 87
2. Program Debugging Posttest . .91

D. Selection of the Covariate . . . 102
E. Analysis of Covariance......... 105
F. Secondary Analysis 112

V. Summary and Research Findings
A. Summary.........................114
B. Discussion of Findings......... 116
C. Conclusions.....................123
B. Further Research Recommendations 128

BIBLIOGRAPHY 140

ix

www.manaraa.com

APPENDICES
A. Prerequisite COBOL Knowledge 156
B. Prerequisite BASIC Knowledge 158
C. Program Syntax and Execution Errors . 160
D. CI201 Business Programming......... 161
E. CS4/007 BASIC Programming 164
F. Pre-Course Student Survey 167
G. BASIC and COBOL Student

Activity Journals 170
H. COBOL Debugging Posttest 172
I. BASIC Debugging Posttest 200
J. Interactive Debugger Illustrations. . 222

x

www.manaraa.com

LIST OF TABLES AND FIGURES
Table Nvwfesr Description/Title Page Number

1 Rating of the Interactive Debugging
Program Control Options 4

2 Rating of the Interactive Debugging
Program Inspection Options 5

3 Rating of the Interactive Debugging
Break Options 5

4 Rating of the Interactive Debugging
Program Sequence Options 6

5 Instructional Comparison of Two
Interactive Program Debuggers 6

6 Possible Cognitive Advantages of
Interactive Program Debuggers 8

7 Psychological Difficulties in
Program Debugging 18

8 Traditional Program Debugging
Techniques 19

9 Alternative Instructional Formats
used in the Study 47

10 Schedule of Surveys and Tests
used in the Study 54

11 Weighting Scale used to Score the
Debugging Posttest 63

12 List of Variables and their Coding
Schemes used in the Study 64

13 Sex of the Participants
Classified by Instructional Sections 75

14 Age of the Participants
Classified by Instructional Sections 75

15 College Credits Taken by
Participants prior to Study
Classified by Instructional Sections 76

xi

www.manaraa.com

Table
16

17

18

19

20

21

22

23

24

25

HVMiber Description/Title Page Number
Participants Classified
by Collegiate Year and
Instructional Section 76
Participants Classified by Major
and Instructional Section 77
Prior Computer Programming
and Computer Interest Classified by
Instructional Section 78
Prior Microcomputer Experience
(in months) of the Participants
Classified by Instructional Section
— Descriptive Statistics 79
Prior Microcomputer Usage Experience
Classified by Type of Microcomputer,
Apple, Macintosh, IBM Compatible,
and other 80
Number of Computer Programming
Language Courses taken by the
Participant Prior to Study
Classified by Instructional Section
— Descriptive Statistics 80
Previous Courses in Computer
Programming Language Classified
by Programming and Instructional
Section — BASIC, COBOL, PASCAL,
and other 81
Prior Microcomputer Software
Experience — Spreadsheet,
Word Processing, and Other 82
Prior Home and Computer Usage
Experience — Spreadsheet,
Word Processing, Programming 83
Group Embedded Figures Test
Results Classified by Instructional
Section — Descriptive Statistics 84

xii

www.manaraa.com

Table Nmnber DescrlPtlon/Tltle Page Number
26 Number of Field Independents, Field

Dependents and Indeterminate as
measured by the Group Embedded Figures
Test Classified by Instructional
Section 85

27 Hours Worked per Week by the
Participant during Study
Classified by Instructional
Section — Descriptive Statistics 86

28 Hours Worked per Week by the
Participant during Study
Classified by Instructional
Section — Descriptive Statistics 86

29 Analysis of the Programming Language
Prerequisite Tests Classified by
Programming Language —
Descriptive Statistics, KR-20,
Point Biserial and Difficulty
Index Analysis 88

30 Analysis of Total Prerequisite
Test Score (PREREQ) Classified by
Instructional Section —
Descriptive Statistics 89

31 Comparison of Individual Prerequisite
Test Score Means Classified by
Instructional Section 89

32 Prerequisite Test 1 Percentage
Classified by Instructional Section —
Descriptive Statistics 90

33 Prerequisite Test 2 Percentage
Classified by Instructional Section —
Descriptive Statistics 90

34 Prerequisite Test 3 Percentage
Classified by Instructional Section —
Descriptive Statistics 90

35 Posttest Program Debugging Score (LOCCOR)
Classified by Instructional Section —
Descriptive Statistics 91

xiii

www.manaraa.com

Table Number Description/Title Page Number
36 Posttest Program Debugging Time

(TIMECOR) Classified by Instructional
Section — Descriptive Statistics 92

37 Posttest Program Mean Debugging Score
Classified by Instructional
Section and Test Question 94

38 Posttest Program Mean Debugging Time
Classified by Instructional
Section and Test Question 94

39 Posttest Program Debugging Score
Classified by Test Question —
Descriptive Statistics, Difficulty
Index, Discrimination Index, Point
Biserial 95

40 Analysis of Debugging Tool used
Posttest Classified by Test
Question for SECT1 (BASIC Traditional
Treatment Group) — Descriptive
Statistics 98

41 Analysis of Debugging Tool used
Posttest Classified by Test
Question for SECT3 (BASIC Interactive
Treatment Group) — Descriptive
Statistics 99

42 Analysis of Debugging Tool used
Posttest Classified by Test
Question for SECT2 (COBOL Traditional
Treatment Group) — Descriptive
Statistics 100

43 Analysis of Debugging Tool used
Posttest Classified by Test
Question for SECT2 (COBOL Interactive
Treatment Group) — Descriptive
Statistics 101

44 Pearson Correlation Analysis of
PROGEXP (prior programming experience)
and LOCCOR, TIMECOR and PREREQ and
associated p values 103

xiv

www.manaraa.com

Table Number Description/Title Page Number
45 Pearson Correlation Analysis of

PREREQ (total percentage prerequisite
test scores) and LOCCOR, TIMECOR and
PROGEXP and associated p values

46 2 x 3 x 2 GIM Analysis of LOCCOR
(the ability to locate and
correct a program logic error) —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values

47 2 x 3 x 2 Factorial GLM-type
Analysis of Variance for LOCCOR
(the ability to locate and
correct a program logic error) —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values

48 2 x 3 x 2 Factorial GLM-type
Analysis of Covariance for LOCCOR
(the ability to locate and
correct a program logic error) —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values

49 2 x 3 Factorial GLM-type
Analysis of Variance for TIMECOR
(the time to locate and
correct a program logic error)
for the BASIC programming language —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values

103

107

107

108

110

XV

www.manaraa.com

Table Number De3cription/Title Fag? Number
50 2 x 3 Factorial GIM-type

Analysis of Covariance for TIMECOR
(the time to locate and
correct a program logic error)
for the BASIC programming language —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values 111

51 2 x 3 Factorial GLM-type
Analysis of Variance for TIMECOR
(the time to locate and
correct a program logic error)
for the COBOL programming language —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values 111

52 2 x 3 Factorial GLM-type
Analysis of Covariance for TIMECOR
(the time to locate and
correct a program logic error)
for the COBOL programming language —
GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values 111

53 2 x 3 x 3 Factorial GLM-type
Analysis of Covariance for Debugging
Posttest Score for the Fourth Question
— GLM summary statistics, degrees of
freedom, source of variation, sum
of squares, means squared and
associated F values 113

xv i

www.manaraa.com

Figure Number Description/Title
Research Design -
A 2 X 3 x 2 Factorial Analysis
of the Ability to Locate a
Computer Program Logic Error
Research Design -
A 2 X 3 Factorial Analysis
of the Time to Locate a
Logic Error in a COBOL Program
Research Design -
A 2 X 3 Factorial Analysis
of the Time to Locate a
Logic Error in a BASIC Program

www.manaraa.com

INTRODUCTION TO THE STUDY

The importance of computer programming education at all
levels of education has continued to grow (Tenner, 1984).
While the programming languages COBOL, C and PASCAL
predominate in post secondary education, there has been
increasing interest in LOGO and BASIC instruction at the
elementary and secondary levels (Maddux, 1989, Papert,
1980). The Occupational Outlook Handbook (1990) views
academic computer programming curricula as a career path.
Other educators have viewed academic computer programming as
a tool to help students develop problem solving skills
(Martin & Hearne, 1990; McCoy & Dodl, 1989).

There has been considerable research into the role of
the computer as an instructional tool to supplement various
traditional curricula (e.g., Computer Based Instruction,
Hypertext). However, there has been little research into the
use of the computer as an instructional tool in computer
programming curricula. While other educational disciplines
have successfully applied the computer as an instructional
tool, computer programming educators have been reluctant to
use computer technology as a tool to improve the quality of
instruction in their curriculum (Laverty, 1990). It is
ironic that computer educators who provide students with
educational opportunities in computer technologies often

www.manaraa.com

2
fail to see the value of computer technology as an
instructional tool in their own curriculum.

Historically, computer programming has provided post
secondary students with many career paths. The Occupational
Outlook Handbook (1990) indicates that careers in computer
programming will increase at an annual rate of 53% over the
next ten years. Two other computer related career areas,
system analysts and computer peripheral operators, are
expected to grow at a rate of 59% and 29%, respectively.
These and other related computer career areas generally
require some type of programming background.

Knowledge of computer programming also can provide
career benefits to noncomputer majors. Kutscher (1990)
suggested that students preparing for careers in the areas
of mathematics, accounting, finance and operations research,
would benefit from a course in computer programming. Many
colleges and universities have required computer programming
courses for various noncomputer majors.

A computer program language curriculum may offer
benefits beyond career opportunities. Research has indicated
that computer language programming may transfer problem
solving skills to other disciplines. Developing strategies,
planning, logical thinking, manipulation of variables and
debugging are skills that have been used historically to
describe the process of problem solving (McCoy & Dodl,
1989). In computer programming language curricula, these

www.manaraa.com

3
problem solving concepts are presented through the topics of
algorithmic development, flowcharting, string and numeric
variables, and syntax and execution debugging skills.

Computer programming curricula have also served
educators by introducing computer technology into the
classroom. Educators have, for years, recognized the
importance of the computer as an instructional tool in the
classroom (Jackson, 1986). Many schools are turning to the
computer programming curriculum as a low cost alternative to
a comprehensive computer literacy policy (Maddux, 1989).

While interest in computer programming education has
increased, changes in computer technology have provided the
computer programming educator with a new instructional tool,
the interactive computer program debugger. The interactive
program debugger permits the student programmer to watch
his/her program execute line by line, step by step, in the
native code of the programming language. With an interactive
computer program debugger, student programmers can learn how
to code by watching the visual animation of the execution of
their program. Through the use of the interactive computer
program debugger student programmers are able to peer into
the mystique of an executing program, thereby providing
opportunities to locate and correct many program logic
errors. Tables 1 thru 4 summarize some of the interactive
debugging options available to programmers. Table 5 presents

www.manaraa.com

4
a summarized instructional comparison of the MicroFocus
COBOL and Microsoft QuickBASIC interactive program debugger.

Table 1
Interactive Debugging Control Options

(implementation and rating)

Type of
Control

Options COBOL BASIC

Student
Control of
Program
Execution

Line by Line Student
Program Control
(Visual Animation of
Program Code)

Excel.
(Step)

Excel.
(F8)

Procedure by
Procedure Student
Program Control

Poor
(Zoom/
Break)

Excel.
(F10)

Automatic Line
Stepping with Speed
Control (Visual
Animation of Program
Code)

Excel.
(GO)

N.A.

Full Speed Execution
with Animated Break
Option

Excel.
(Zoom)

Excel.
(F5)

Structured Chart
Animation of Program
Code

Excel. N.A.

www.manaraa.com

5

Table 2
Interactive Debugging Inspection Options

(implementation and rating)

Type of
| Control

Options COBOL BASIC

Inspection
and
Manipulation
of Data
Contents

Single Variable
Inspection

Excel.
Query

Poor
Watch
Var.

Multiple Variable
Inspection

Excel.
Adv.
Query

Poor
Watch
Var.

Interactive Change
of Variable
Contents
during program
Execution

Excel.
Monitor

N. A.

Table 3
Interactive Debugging Break Options

(implementation and rating)

Type of
Control

Options COBOL BASIC

Setting
Interactive

Unconditional Break
Points

Excel.
Break

Excel.
F9

Break
Points Conditional Break

Points
N.A. Excel.

by Menu

www.manaraa.com

6

1 Table 4
J Interactive Debugging Sequence Options

(implementation and rating)

Type of
Control

Options COBOL BASIC

Interactive
Alteration
of the
Sequence of

1“

Change the Sequence
of Execution

Good
RESET

N.A.

Execute Instructions
not included in
Original Code during
Program Execution

Good
DO

Excel.
Immed.
Mode

Table 5
Overall Instructional Comparisons of two

Interactive Program Debuggers

Quality of Instructional Delivery COBOL BASIC
Ease of Use Excel. Good
Use of Color as an Instructional
Cue

Excel. Excel.

Use of Graphical, i.e., boxes,
underlines as an Instructional
Cue

Excel. Poor

Use of a Graphical Animation
Techniques

Excel. N.A.

Interface with Program Editor Good. Excel. |

In the past many student programmers have used the
"black box" approach (Pressman, 1987, p. 470). This program
debugging strategy would require programmers to submit their
program and input data to the computer (the black box) and

www.manaraa.com

7
then compare the actual program outputs to the expected
program outputs. Backtracking and hand-tracing the program's
source code commonly supplemented the "black box" approach.

Program flowcharting and other graphical tools have
also been used in the computer programming curricula as a
planning and program tool. These graphical images were used
to graphically represent the internal algorithmic processes
of the computer program. However, these graphical images
only provided an indirect symbolic relationship between
actual program source code.

Writing a computer program and debugging computer
program errors are demanding cognitive tasks. Some
researchers have estimated that 50% of the program
development effort is spent on testing, finding and
correcting logic and execution errors (Bell & Pugh, 1987;
Ward, 1988; Yourdan & Constantine, 1979). Though computer
program writing (coding a program) and program debugging may
appear procedurally interrelated, they may represent two
different, complex sets of cognitive activities.

Popular use of manual tracing strategies suggests that
cognitive processing demands of program debugging may exceed
the storage and retrieval constraints of short term memory.
This may suggest that the matrix of program operations and
manipulated data elements may quickly exceed Miller's (1956)
seven information units even in simplistic programs.

www.manaraa.com

8
Interactive program debuggers may offer the advantage of

releasing short term memory resources for the storage and
processing of other programming debugging tasks. This
reduction in cognitive overhead may permit the student
programmer to better perceive the program bug, retrieve
solutions from long term memory and develop better problem
solving strategies. Table 6 summarizes some of the possible
cognitive instructional advantages offered by interactive
program debuggers.

Table 6
Possible Cognitive Advantages of Interactive

Program Debuggers

1. Student control of program execution may
increase the ability of the student programmer
to detect a program error and to restructure a
solution to correct the program error.

2. The ability to watch and track variable
contents, and to automate the execution of a
program may reduce various debugging clerical
tasks and decrease the demand on short term
memory resources.

3. Various color and graphical visual queuing
techniques that may direct and maintain a
student programmer's concentration.

4. Textual and graphical animation tools may
provide contextual organizational tools that
may aide field dependent programmers to study a
specific program logic errors.

5. Color, student control and textual animation
tools may increase the programmer's motivation,
interest and contribute to elaboration and long
term memory storage.

www.manaraa.com

9
The interactive program debugger may enable the student

to visualize the execution of their program through the use
of text and graphical images. This visual constructive
process may benefit some students more than others. Jesky &
Berry (1991) state: "Research into the use of visuals for
instructional purposes has increasingly identified the
interaction between an individual learner's cognitive skills
and the design factors incorporated in the instructional
method" (p. 290). The fact that field dependent individuals
have trouble disembedding objects from their context and
structuring information to develop solutions (Messick, 1977)
suggests that field dependent students may benefit more from
an interactive program debugger.

While there has been some research concerning the
programming productivity of professional programmers, there
has been little research into the processes that students
use to debug logic and execution errors in their programs.
Most programming language texts provide little discussion of
debugging techniques and strategies in relationship to the
time students and professional programmers spend debugging
logic and execution errors in programs (Benander & Benander,
1989). Yet, it is debugging logic or execution errors in a
program that creates the most fear and anxiety in students
(Shneiderman, 1980).

Interactive program debuggers are not a recent
phenomena. During the early 1980's many mainframe computer

www.manaraa.com

10
companies offered interactive program debuggers for their
family of program language translators. In spite of their
increased availability, there appears to be no research into
the use of interactive program debuggers in computer program
language education or professional settings.

Studying the value of interactive computer program
debuggers may lead to better instructional strategies and
may balance the cognitive demands of computer programming
curricula. A key, but as yet unstudied question, is whether
computer program interactive debuggers will help students to
learn program debugging skills faster, better and with less
effort.

Purpose of the Study
The purpose of this study was to evaluate the effects

of computer program debugging tools, computer program
languages, and field dependence on the ability of a student
programmer to locate and correct logic errors in a computer
program.

Delimitations

This study will involve students enrolled in two sections
of an introductory COBOL programming course and two sections
of an introductory BASIC programming course. Each COBOL and
BASIC course involved with the study will cover three credit

www.manaraa.com

11
hours for one 15 week semester. Each course involved in this
study will conducted in the same semester at the same
school. All programming courses will be conducted by the
same instructor.

The COBOL and BASIC programming languages were chosen
for study rather than other programming languages because
these languages: (a) represented the largest population to
be studied, (b) were required courses for noncomputer
majors, (c) contrasted the effects of an interpretive versus
a compiled language, and (d) offered the most developed,
student-accessible program debuggers.

The results of this study will be limited to entry level
COBOL and BASIC programming curricula in higher education.
While topics concerning the process of program development
are discussed in these curricula, the results of this study
are limited to the tasks of debugging logic errors in COBOL
and BASIC programs during the instructional process.
Furthermore, computer debugging tasks studied will be
limited to the five debugging tasks presented in the
posttest program and these results may not be applicable to
other program debugging tasks.

Assumptions
The academic experience of this researcher in computer

programming curricula significantly aided in the development
of the research design and test materials of this study. In

www.manaraa.com

12
addition, this experience was valuable in the analysis of
the data and the interpretation of the results.

Research Questions

1. Do college level students in entry level COBOL and BASIC
programming courses who use interactive program debugging
techniques differ in their ability to locate and correct
a logic error in a syntax and execution error-free
program from other college level programming students who
use a traditional program debugging technique?

2. Does field dependence of college level students in
entry level COBOL and BASIC programming courses
differentially affect their ability to locate and correct
a logic error in a syntax and execution error-free
program using an interactive program debugger versus a
traditional program debugging technique?

3. Do college level students in entry level COBOL or BASIC
programming courses who use interactive program debugging
techniques differ in the amount of time required to
locate and correct a logic error in a syntax and
execution error-free from other college level programming
students who use a traditional program debugging
technique?

www.manaraa.com

13
Definition of Terms

Entry level college level programming courses
Students enrolled in a college entry level COBOL or

BASIC programming class.

Ability ts l9.satfe and gorrssfc. Isqic error?
Scores obtained by students on a computer debugging

posttest (Appendices J & K), which requires students to
locate and correct the following logic errors in a syntax
and execution error-free program: (a) failure to execute a
statement within a loop, (b) incorrect execution sequence,
and (c) the incorrect execution of conditional statements.

Syntax and execution error-free program
COBOL and BASIC program source code that contains

no syntax or execution errors (Appendix C).

Traditional debugging technique
Traditional debugging technique is the procedure of

embedding CRT output statements (e.g. DISPLAY (COBOL) or
PRINT (BASIC)) within a source program and testing the
program by the reexecution of the program and review of the
output results.

www.manaraa.com

14
Interactive program debugger techniques
Interactive program debugging tools developed by

MicroFocus, Inc. (COBOL) and Microsoft, Inc. (QuickBASIC).
These two interactive program debugging tools are comparable
in terms of performance, capabilities and instructional
time.

Prior programming experience
The number of computer programming courses taken prior

to enrollment in the course. High school or college,
informal self-instruction programming course work and
professional programming experience were included.

Prerequisite COBOL and BASIC knowledge
Scores obtained by students from three objective

achievement tests, which will measure the student's ability
to develop, code, compile, and correct syntax errors in a
source program and apply various program algorithms, e.g.,
accumulation, counting, and high/low. Appendix A lists
prerequisite COBOL knowledge necessary for a student to
debug logic errors. Appendix B lists prerequisite BASIC
knowledge necessary for a student to debug logic errors.

www.manaraa.com

15
Field dependence/field independence
" . . . refers to a consistent mode of approaching the

environment in analytical as opposed to global terms. It
denotes the ability to articulate figures as discrete from
their backgrounds and an ability from disembedding contexts
. . ." (Messick, 1977, p. 14). The field independent pole is
a mode of perception in which individuals perceive the
surrounding environment analytically. Field dependent
individuals, on the other hand, are more effected by the
surrounding environment and perceive things less
analytically (Witkin, Goodenough & Oltman, 1979).

For the purpose of this study this construct will be
represented by the score obtained by students from the Group
Embedded Figures Test (Witkin, et al., 1971). Individuals
with low scores on the GEFT test tend to be considered field
dependent, while individuals who score high on the GEFT test
are considered field independent (Witkin, et al., 1971).

www.manaraa.com

REVIEW OF RELATED RE8EARCH AMD LITERATURE

Introduction
Direct research into computer programming language

instruction and student program debugging has been limited.
While previous research in student program debugging has
been lacking, recent cognitive research findings have
provided evidence to suggest that the computer program
debuggers may be both an effective instructional tool, as
well as a cognitive tool. Developing a computer program and
debugging computer program errors are demanding problem
solving tasks (Shneiderman, 1980). The interactive computer
program debugger has the ability to: (a) supplement
constrained short term memory resources, (b) provide
increased learner control and feedback, and (c) provide
visual images of the source program execution images. Some
research evidence may suggest that some type of learners,
field dependent students, may benefit from the interactive
program debugger more than other students.

This chapter will review historically significant and
current research related to this study. The first section of
this chapter will review research into computer program
debugging. The second section of this chapter will review
current studies into problem solving and short term memory.

16

www.manaraa.com

17
The third section of this chapter will introduce the
concept of cognitive style and will be followed by a review
of research literature into field dependence and
programming. The fourth section will review current studies
into learner control. The last section will summarize the
review of literature as an orientation for the present
study.

Computer Program Debugging
Philip Gilbert (1983) described debugging a program in

following manner:
When the processing of a test point gives a different
result from the specified one, an error has been found.
That is, the test point has been successful in
discovering that the program has a fault. The error must
now be precisely pinpointed and repaired, a process
called debugging. The error itself is called a bug.
(p. 545)
Referring to the debugging process Roger Pressman

(1987) stated that:
Results are assessed and a lack of correspondence between
expected and actual is encountered. In many cases, the
noncorresponding data are a symptom of an underlying
cause as yet hidden. The debugging process attempts to
match symptom with cause, thereby leading to error
correction, (p. 519)
Pinpointing the location and the nature of a program bug

(logic error) is the most time-consuming task in debugging.
Meyers (1979) has said, "locating the error is 95 percent of
the problem" (p. 257). Roger Pressman (1987) provided a list
of reasons why program debugging is so difficult
(see Table 7).

www.manaraa.com

18

Table 7
Psychological Difficulties in Program Debugging

II. The symptom and the cause of the program bug may be geographically remote. That is the symptom may
appear in one part of the program while the cause
may actually be located at a different location
within the program.

2. The symptom may disappear temporarily when
another error is corrected.

3. The symptom may be caused by a non-error, i.e.,
round-off inaccuracies.

4. The symptom may be caused by a human error that
is not easily traced.

5. The symptom may be a result of the indeterminate
order for interactive data entry, and the error
in the input conditions may be difficult to
reproduce.

6. The symptom may be caused by hardware errors, or
the interaction of hardware and software.

^NoteTAaaptedfroB^toaerPressmann.987) . Software
Engineering; A practitioner's approach. New York:
McGraw-Hill, pp. 521-520.

Describing program debugging from the psychological
perspective Shneiderman (1980) states:

Debugging is one of the most frustrating parts of
programming. It has elements of problem solving or brain
teasers, coupled with the annoying recognition that you
have made a mistake. Heightened anxiety and the
unwillingness to accept the possibility of errors
increase the task difficulty. Fortunately, there is a
great sigh of relief and a lessening of tension when the
bug is ultimately . . . corrected, (p. 28)
Research into program debugging is a relatively recent

development. Benander & Benander (1989) studied the

www.manaraa.com

frequency of using of five traditional mainframe debugging
techniques taught in education settings. Table 8 summarizes
their findings. Studies of microcomputer program debugging
strategies were not found.

Table 8 |
Traditional Program Debugging Techniques

Hand Tracing The manual tracing of execution of
a program and the contents of
variables at various stages of the
program's progress.

Appropriate
Output
Statements

The use of source language output
statements to test the execution
of critical points within a
computer program. Source language
output statements can also be used
to provide an automatic trace of
values at various stages of the
programs.

Debug Verbs The use of compiler or program
translator options to help debug a
program.
STATE- Causes the COBOL statement
that was being executed at point
of the error to be printed.
FLOW and TRACE- Causes a printing
of the procedure names executed
before the error.
XREF - Causes a sorted listing of
data names and procedure names to
be printed.

Seek Help From
others

Ask other students, tutors or
faculty for help.

JCL Abend Codes Studying the operating system's
ABEND codes (abnormal termination)
to determine why a particular
program step did not execute.

Mote: Adapted from Benander & Benander, 1989.

www.manaraa.com

20
Using a questionnaire method, Benander & Benander

(1989) found that students who utilize hand tracing
techniques compared to other program debugging techniques
were the most successful and required the least amount of
program debugging time. Those students who reported the
greatest amount of debugging time were inconsistent in the
debugging method used and relied on the non-hand tracing
techniques. The Benander & Benander study also found that
students who utilized hand tracing techniques, more than any
other program debugging techniques, resulted in the least
amount of time for debugging and were the most successful.
The assumption of the study was that it was the students'
failure to understand their program logic influenced their
choice of a debugging technique.

Doris Carver (1989), investigated the patterns of
program debugging used by three professional programmers
while coding and developing 13 COBOL modules. The study did
not intend to produce any generalized conclusions. Rather,
it proposed a new measurement instrument for future
debugging research, called the Programmer Change Profile
(PP). The PP coefficient can be used to describe the pattern
of debugging corrections used by different programmers. For
example, some programmers implement a high number of changes
early in the debugging process and few changes later in the
debugging process. Other programmers in the study exhibited
a more constant rate of change over the entire debugging

www.manaraa.com

21
cycle. Carver, proposed the possibility that there exists a
psychological point, called the "Change Saturation Point,"
for every programmer where the programmer will not proceed
with any more changes before submitting the program for
further execution and testing.

Program debugging strategies represent a set of
cognitive processes whose objectives are to locate a program
error and to formulate a solution that will correct the
error (Shneiderman, 1980). Program debugging strategies
employ various disembedding and various cognitive
reconstructing strategies. Meyers (1979) categorized three
popular types of program debugging strategies: brute force,
backtracking and cause elimination.

Roger Pressman (1987) described a "brute force"
debugging strategy as:

Using a 'let the computer find the error' philosophy,
memory dumps are taken, run time traces are invoked, a
program is loaded with WRITE statements. We hope that the
morass of information that is produced will find a clue
that will lead us to the cause of the error. Although the
mass of information produced by this method may
eventually lead to the discovery and correction of the
program bug, it frequently leads to wasted time and
effort, (p. 521)
A memory dump is a diagnostic report that displays the

exact binary contents of the internal computer's memory at
the point of the error. These reports are useful for
detecting many program execution errors, e.g., divide by
zero (Davis, 1983).

www.manaraa.com

22
The TRACE statement is a COBOL source command, which is

coded in the program and will display the major execution
steps (modules or paragraphs) while the program executes.
The output of the TRACE statement is reviewed by the
programmer to investigate the major processing steps
executed by the program. The TRACE statement does not
display detailed program code execution.

The WRITE statement is a COBOL source program commands
that directs output to the printer. Another COBOL statement
DISPLAY, which will direct output to the screen, is more
frequently used in current COBOL text books. Stern & Stern
(1981) recommends the use of the COBOL DISPLAY statement to
check for logic errors.

To make debugging easier, it is possible to examine the
contents of certain fields at certain checkpoints in the
program, usually after the fields have been altered. In
this way the programmer can easily spot a logic error by
manually performing the necessary operations on the data
and comparing the results with the computer-produced
output that is displayed. When a discrepancy is found,
the logic error must have occurred after the previous
check point. (Stern & Stern, 1991, p. 383)
Pressman (1987) described "backtracking" as a common

program debugging strategy that has been found to be
generally successful in the debugging of smaller programs.
Beginning at the point in the program where the symptom is
encountered, the source code is manually traced back until
the location of the program bug is encountered.
Unfortunately, as the number of lines of program code and

www.manaraa.com

23
the interaction of program bugs increases, the effectiveness
of backtracking decreases.

The third category of program debugging proposed by
Meyers (1979) is "cause elimination." Cause elimination
program debugging strategies require the programmer to
gather data and to prepare a list of possible causes for an
observed program bug. Tests will be designed and conducted
in an attempt to isolate the bug.

There are critics of interactive debugging tools.
Swaine (1990) claims that debugging tools are overrated and
are often abused by poor programmers. Knowledge of proper
program structure and the ability to analyze data flows are
the best ways to write a program and to detect program
errors. There are additional concerns (Djikstra et al.,
1989) that the automation of computer science curriculum may
create a situation where students may no longer have any
concrete understanding of the actual processes of writing
programs.

Problem Solving and Short Term Memory
Shneiderman (1980) has described program debugging as a

problem solving task. Problem solving tasks have been
categorized by the procedures used to achieve a solution
based upon a particular set of problem requirements (Bourne
et al., 1986). Within this context, writing computer
programs is a transformation process, which may utilize

www.manaraa.com

24
various programming algorithms to solve a particular program
requirement.

Previous research has not provided evidence to support
the existence of any one best problem solving strategy.
Simple problems may be solved by applying various heuristic
problem solving strategies, e.g., representiveness (Ormrod,
1990). This short cut method compares the similarities of
current program requirements to previously written programs
or algorithms. Complex problems frequently require a
combination of algorithmic procedures (Ormrod, 1990).

Breaking up a complex program into two or more
subproblems and then working successively on each individual
component is an illustration of top down problem solving.
Top down program design strategies (Pressman, 1987) are
applications of "means-ends” analysis (Newell & Simon, 1972;
Restle & Davis, 1962; Resnick & Glasser, 1976). "Divide and
conquer" cognitive strategies seek to work within the
constraints of short term memory resources.

Previous cognitive research has shown that short term
memory capacity is a bottleneck for any problem solving
process (Ormrod, 1990). If the amount of internally stored
information and the cognitive requirements of problem
solving strategies exceed the capacity of short term memory,
the problem cannot be solved (Ormrod, 1990).

Short term memory has a very limited storage

www.manaraa.com

25
capacity. The maximum number of information units that can
be stored is approximately seven, plus or minus two (Miller,
1956). Simon (1974) suggested that chunking, a process of
combining information units, can be used to effectively
increase the short term memory storage. Language based
information is generally stored in a more efficient, or
compressed, auditory or verbal format (Conrad, 1971). Some
short term information may be stored in visual form (Conrad,
1972). Without rehearsal, short term memory will retain
information for about 20 to 25 seconds (Peterson & Peterson,
1959) .

Cognitive Style. Field Dependence and Programming
This section begins with a discussion of cognitive

styles and the nature of field dependence. This is followed
by a review of the research in field dependence and
programming, and is concluded with a discussion of the
measurements used for field dependence.

Not all individuals learn in the same manner.
Students tend to persistently use a learning strategy that
best fits their cognitive needs to acquire knowledge.
Learning is an individualistic cognitive activity. In 1971,
Witkin, Oltman, Raskin and Karp define cognitive styles as:

. . . the characteristic, self-consistent modes of
functioning which individuals show their perceptual and
intellectual activities. These cognitive styles are
manifestations in the cognitive sphere of still broader
dimensions of personal functioning which cut across
diverse psychological areas (p. 127).

www.manaraa.com

26
Messick (1954) stated that cognitive styles:

. . . represent consistencies in the manner or form
of cognition or the level of skill displayed in cognitive
performance. They are conceptualized as stable attitudes,
preferences, or habitual strategies determining a
person's mode of perceiving, remembering, thinking and
problem solving, (p. 5).

While researchers have suggested numerous constructs to
describe the differences in student's cognitive styles,
field dependence seems to be the most appropriate for the
study of interactive program debuggers.

Messick (1954) described field independent
individuals as being capable of solving problems that
require them to take a fact out of context and then
restructure the information to be used in a different
context. These cognitive abilities, used by field
independent individuals, are frequently called
"disembedding" and "cognitive restructuring" (Cavaiani,
1989, p. 412). A field independent individual addresses the
environment in more analytical terms and can more easily
find the presence of logic errors (Messick, 1954) . Field
independent individuals also enjoy working things out
themselves, prefer a solitary environment and require less
feedback. During problem solving processes these individuals
will perceptually and intellectually analyze and impose
structure on an unstructured task.

On the other hand, field dependent individuals have
trouble disembedding objects from their context, perceive
constructs more globally and rely on external references

www.manaraa.com

27
(Messick, 1954, Rameriez & Castaneda, 1979). During problem
solving processes these individuals accept an unstructured
task as they perceive it and have difficulty analyzing and
structuring the task (Witkin, Goodenough & Oltman, 1979).
Pascual-Leone et al. (1978) have shown that field dependent
individuals select inappropriate problem solving strategies
more than field independent individuals irrespective of the
situation.

Cognitive styles are not value directional. Field
independent individuals are not considered to have superior
abilities than field dependent individuals, rather these
individuals process and perceive information differently.
Witkin & Goodenough (1981) noted that the nature of field
dependence is not easily altered and that it remained stable
over a period of years. Jonassen (1987) recommended that
instructors provide a variety of learning activities to
allow students to encode and interpret information in a way
that best takes advantages of one's particular cognitive
style.

Jonassen (1988) and Cronbach and Snow (1978) have
suggested that the learning environment should be adapted or
supplanted to take into account the strengths and weaknesses
of the student in order to achieve a desired instructional
outcome. Supplantation approaches prescribe that the
instructional process would be more effective when the tasks

www.manaraa.com

28
and methods of presenting information are designed to
complement the internal processing skills of the student.

French (1983) has identified two types of supplantation
processes: conciliatory and compensatory. Conciliatory
approaches are designed to emphasize the strengths and to
avoid the weaknesses of the learner. For example, the
utility of the interactive program debugger to visually
display the student's program code while it was executing
was expected to assist field dependent students in learning
program debugging skills.

On the other hand, compensatory supplantation requires
the instructional designer to provide instructional tools
required for a task that the learner does not possess. For
example, the utility of interactive program debugger to: (a)
inquire and manipulate multiple variables, (b) highlight,
cue and set interactive breaks points in an executing
program, and (c) the animation of a program structure chart
was expected to assist field dependent students in learning
program debugging skills.

Cavaiani (1989) investigated the influence of
field dependence on the ability of a student programmer to
debug a COBOL program. Thirty-nine students enrolled in an
introductory COBOL programming course using a mainframe
comnputer participated in this study. Using the Group
Embedded Figures Test. Cavaiani (1989) assigned the
participants to one of two groups, field independent and

www.manaraa.com

29
field dependent. Seven debugging programs were administered
as a pen-and-pencil test to the students on several
different occasions during the semester. Two of the test
programs contained a syntax error. Five of the test programs
contained a program logic error.

The debugging test score was based upon a weighting of
three different criteria: (a) the number of errors located
and corrected, (b) the number of errors located and not
corrected, and (c) the number of correct statements that
were marked incorrect. Separate composite scores were
compiled for the syntax debugging and the logic debugging
tasks.

Using a Spearman Correlation Analysis, the Cavaiani study
(1989) provided evidence that there was no difference
between a field independent and a field dependent individual
in the ability to correct syntax errors in a computer
program. This result was expected since this type of
programming debugging task required minimal effort and the
task could be completed in the given contextual environment.
On the other hand, field dependent individuals did have
significantly more difficulty in locating and correcting
program logic errors.

The Cavaiani study (1989) also investigated the effects
of various weighting schemes to be used for scoring program
debugging tasks. In order to differentiate between field
independent and field dependent programmers, Cavaiani

www.manaraa.com

30
suggested that the program debugging scoring scheme possess
the following characteristics: (a) it should assign the same
or nearly same weight to the location and correction of the
error as it does to finding the location of the errors only,
and (b) it should assess a penalty to subjects who make use
of trial-and-error methods. Weighting schemes used in the
study that exhibited the above criteria were able to
statistically (p<.05) detect a difference between field
dependent and independent programmers in terms of the
ability to locate and correct a program logic error.

Identifying syntax errors is a trivial task and relies
more on memory recall than a problem solving process.
However, locating and correcting program logic errors
requires the individual to take a critical program element
out of the context of the program and to select the correct
problem solving strategy to formulate a solution for the
logic error. This process also requires students to
understand the logic error in relation to the context of the
program.

Measuring the construct of field dependence can be
categorized into 2 types: 1) perceptual tests such as the
Body Adjustment Test and the Rod and Frame Test, and 2)
general fluid visualization tests such as the Embedded
Figures Test and the Group Embedded Figures Test (Linn &
Kyllonen, 1981).

www.manaraa.com

31
In early research into field dependence, Witkin (1949)

studied the ability of pilots to keep their orientation in
relationship to the ground. These original tests were
conducted under specialized testing conditions. The Body
Adjustment Test (BAT) required an individual who was seated
in a small room to adjust his body's posture to a true
upright position when both his chair and the room were
tilted in different directions. The Rod and Frame Test
required an individual who was seated in a darken room to
direct the experimenter to adjust the position of a lighted
rod until it was vertical. A portable version of the Rod and
Frame Test was subsequently developed to aid researchers in
the field.

Witkin et al. (1971) developed two alternative testing
procedures that could be completed with pencil and paper.
The Embedded Figures Test (EFT) and the Group Embedded
Figures Test (GEFT) required a subject to locate a simple
figure within the context of complex and obscured field. The
EFT was individually administered to each subject and
required them to trace the sought-after simple figure on the
test card. The EFT was impractical to administer to a large
number of subjects as required in large scale research. A
large group version of the EFT was subsequently developed.

The Group Embedded Figures Test (GEFT) was modelled as
closely as possible to the Embedded Figures Test (EFT) with
respect to presentation and format. Light shading of areas

www.manaraa.com

32
of the figures replaced the use of color to obscure figures
in the EFT. Results have shown that men perform slightly,
but significantly, better on the GEFT test than women (p <
.005). Results of the test tend to be more reliable over the
age of 17. These findings are consistent with those
differences found with the EFT (Witkin, et al., 1971).

The Group Embedded Figures Test (GEFT) correlates highly
with the Embedded Figures Test (-.82 for men and -.63 for
women). The GEFT also significantly correlates with the
Portable Rod and Frame Test (-.39 for men and -.34 for
women).

Learner Control
Historically, the amount of control that a student

programmer can exercise with the traditional program
debugging methods has been limited. The interactive program
debugger may permit a student to control the debugging
process in a manner that best meets their particular
learning style. The concept of learner control has been a
topic of considerable research interest in computer-based
instruction. Previous research indicates that learner
control will provide benefits in terms of motivation,
interest, enhancement of metacognitive and cognitive skills,
and adaptation to particular learning style preferences
(Carrier & Jonassen, 1988; Jonassen & Tennyson, 1983; Lee,
1991).

www.manaraa.com

33
Research results concerning learner control and

achievement are more complex. Previous studies have
indicated that increased learner control had no effect on
achievement when college students had a low level of
prerequisite knowledge. On the other hand, high levels of
prior knowledge and learner control treatments, were found
to increase achievement in college students (Goeztfried &
Hannafin, 1985, Hannafin, 1984, Krendel & Liberman, 1988,
Steinberg, 1977, Tobias, 1976).

Considering the interaction of metacognitive factors and
learner control, Lee (1991) provided evidence that a child's
prior knowledge may not be a factor in the acquisition of
information. Learner control strategies when supplemented by
appropriate feedback and supportive factors, e.g., clearly
labeled options and advice of ongoing progress, can be
effective even for novice learners. In a related study,
Arnone & Grabowski (1991) presented evidence citing that
learner control strategies with "advisement pre-lessons"
will provided the greatest level of achievement and
curiosity in younger children.

Matton et al. (1991) noted that previous findings on
learner control strategies failed to consider the nature of
the instructional objective. Using a flight simulator
application designed for the United States Air Force, Matton
et al. (1991) found no positive learner control effects. The
results of this study suggested that problem solving

www.manaraa.com

34
learning may not benefit from learner control as much as
concept and rule based learning.

Orientation to the Present Study
Previous research on student and professional program

debugging skills has been too inadequate to generalize any
conclusions related to factors that affect the ability of a
student to locate and correct a logic error (debug) in a
computer program. In addition, these prior studies have
failed to consider newer techniques of debugging programs,
i.e., the interactive program debugger.

More specific research is needed into program debugging.
Previous researchers (Benander & Benander, 1989; Cavaiani,
1989) used students who may have had prior programming
experience in other courses. These studies, however, had
failed to consider the degree to which programming
experience affected the choice of the debugging tool or
whether programming experience affects the proficiency of
the use of the debugging tool. In addition, the Cavaiani
study (1989) used a pen-and-pencil test to measure the
student's ability to locate and correct a program logic
error. This artificiality of the testing condition may limit
one's ability to generalize the results of this study to the
actual program debugging task performed on a computer.

Research is also needed into the trend toward
microcomputer-based programming education. The Benander &

www.manaraa.com

35
Benander's study (1989) was focused on the use of
traditional mainframe computer programming tools. This study
will investigate both traditional and interactive program
debugging tools that are available on microcomputers. The
low cost of microcomputer hardware and programming software
and their ease of use has made microcomputers very popular
for many programming language courses. Though mainframe
computers support interactive program debuggers, they
generally do not support the graphical type interfaces used
by microcomputer program debuggers.

Successful program debugging begins with the programmer's
ability to perceive the symptoms of the program logic error.
The utility of the interactive program debugger to visually
animate the execution of the program code may help student's
to better perceive and locate the logic error.

The interactive program debugger also may lessen the
cognitive burden on short term memory resources of student
programmers. Relieved of various clerical tasks, student
programmers may be able to concentrate more on the process
of learning program debugging. Interactive program debuggers
lessen cognitive burden by: (a) enabling the student control
the speed of program execution by pressing a key or to
setting the speed of execution and (b) automatically
monitoring various data entity changes while the program
executes.

www.manaraa.com

36
Previous research (Cavaiani, 1989) seems to suggest that

some student programmers may benefit more than others. Field
dependent individuals should be expected to benefit more
from the use of interactive program debuggers than field
independent individuals. Field dependent students were
expected to be aided by several possible disembedding and
constructive strategies employed by the interactive program
debugger: (a) the ability to view the execution steps of the
program as written in the student's native program code, (b)
the use of various organizational cues that would enable
students to structure the debugging process, e.g., color
highlighting of an executing statement organizes attention,
and (c) inspected data items are graphically boxed to
disembedded them from the context of the executing program
(Appendix J).

Previous research has provided evidence for the
instructional advantages of increased learner control
(Goeztfried & Hannafin, 1985, Hannafin, 1984, Krendel &
Liberman, 1988, Steinberg, 1977, Tobias, 1976).
The ability to control variables is the foundation of the
experimental learning process. Other sciences have conducted
real time experiments that have enabled individuals to learn
concepts and skills by manipulating various variables during
the experimental process. In the past, similar real time
experimentation strategies were not available to computer
programmers. Increased student control of the debugging

www.manaraa.com

37
process may encourage the development of an organized
program debugging strategy, a "cognitive map," that may be
successfully retrieved in the future.

In this study, students will be exposed to two different
instructional methods, interactive and traditional program
debugging, used in two different programming language
curricula (COBOL and BASIC). Students will further be
classified as field independent, indeterminate, or field
dependent. This study will attempt to see if there exists a
difference between the interactive and the traditional
instructional methods, and whether the type of programming
language and the level of field independence interacts with
the student's ability to locate and correct logic errors in
a computer program.

www.manaraa.com

RESEARCH METHODOLOGY

Problem Restated

The purpose of this study was to evaluate the effects
of computer program debugging tools, computer program
languages, and field dependence on the ability of a student
programmer to locate and correct logic errors in a computer
program.

Research design
The design of this study is a posttest-only, completely

between-subjects, fully-crossed factorial involving three
independent variables: (a) debugging treatment, (b)
programming language, and (c) field dependence. A quasi-
experimental strategy was used to study the effects of these
independent variables on two dependent variables: (a)
ability to locate and correct a program logic error (LOCCOR)
and (b) the amount of time to successfully locate and
correct a program logic error (TIMECOR).

38

www.manaraa.com

39

FIGURE 1
A 2 X 3 X 2 Factorial Analysis of tha

Ability to Locats a Computer Program Logic Error

Cobol
Basic

Field Independence

Indeterminate

Field Dependence

Interactive Traditional
Debugging Debugging

Techniques Techniques
(Treatment) (Control)

CCovariate: Prerequisite Programing Skills]

FIGURE 2
A 2 X 3 Factorial Analysis of the Tims to Locate a Logic Error in a COBOL Program

Field Independence

Indeterminate

Field Dependence

Interactive Traditional
Debugging Debugging
Techniques Techniques
(Treatment) (Control)

CCovariate: Prerequisite Programming Skills]

www.manaraa.com

40

FIGURE 3
A 2 X 3 Factorial Analysis of tha Tins to Looats a Logic Error in a BASIC Progran

Field Independence

Indeterminate

Field Dependence

Interactive Traditional
Debugging Debugging
Techniques Techniques
(Treatment) (Control)

CCovariate: Prerequisite Programing Skills]

A factorial design permits the analysis of complex
behaviors. Based upon Issac & Michael's guidelines (1981), a
factorial research design was appropriate for this study
because: (a) the simultaneous interaction between
independent variables (e.g., treatment and field dependence)
may affect the response variables, (b) field dependence
could not be controlled in the design of the study (i.e., it
cannot be directly manipulated), and (c) several research
questions may be tested simultaneously.

www.manaraa.com

41
Methodological Limitations

A quasi-experimental research design attempts to
approximate the conditions of a true experiment, but is
conducted in a setting that does not allow the researcher to
control or manipulate all relevant variables. While quasi-
experimental research designs may closely approximate the
experiences of a "real world" education system, this
research design may pose threats to the internal validity of
the study (Maxwell & Delaney, 1990). Among the conditions
limiting our ability to measure the effects of the treatment
on the dependent variables include: (a) possible selection
biases attributable to the use of intact groups, (b) the
mastery of programming language prerequisite skills
necessary to debug computer programs, (c) controlling
student activities outside the classroom, (d) controlling
the use of the interactive program debugger in the BASIC
programming language treatment, and (e) the threats to
internal validity caused by a posttest-only research design.
Each of these limitations is discussed below.

Due to the limitations of selecting the subjects in a
college level academic higher education environment and the
limited availability of computer facilities, the random
assignment of subjects to groups was impossible. Students
registered for the various course sections in a normal
fashion and without manipulation. The COBOL sections used in

www.manaraa.com

42
the study were randomly selected from the pool of all
available sections. The BASIC sections used in the study
were selected at random from a pool that represented 70% of
all available sections. Once the sections were selected,
each intact section of COBOL and BASIC programming classes
were randomly selected and assigned to either the
interactive or traditional debugging treatments. No student
was enrolled in more than one section.

A consequence of using intact groups is that there is
little control over the characteristics of the subjects
selected. The variable PROGEXP was expected to correlate
with each dependent variable, and represented the number of
computer programming courses at the high school, collegiate,
or professional level taken by the participant prior to the
beginning of the study. Because this variable could
conceivably contaminate interpretations of the data, it was
important to try to control its effects statistically by
using PROGEXP as a covariate in an ANCOVA. Other background
and demographic data (Appendix F) also were collected by a
pre-course survey and were analyzed to determine if they
should be used as covariates in the analysis.

A second shortcoming of the design used in this study
involves the participant's mastery of minimum program
development, syntactical and algorithmic skills. To take
into account the participants previous mastery of
programming skills, three program language prerequisite

www.manaraa.com

43
knowledge tests were administered prior to the treatment and
were subsequently analyzed to determine their correlation
with the dependent variables used in this study. An ANCOVA
was used to adjust the difference in means of the dependent
variables attributable to the differences found in the
mastery of computer programming prerequisite skills. These
COBOL and BASIC computer programming prerequisite skills are
outlined in Appendices A and B.

A third limitation of the research design was the lack
of ability to control student activities outside the
classroom. Conducting computer educational research over a
period of time in which students may use the computer
outside the classroom posed other threats to the internal
validity of this study. These threats include: (a)
controlling communications between students involved in the
treatment and control groups and (b) controlling the amount,
type and quality of time spent outside the class preparing,
coding and debugging programs. To assess student use of the
computer outside the classroom student activity data were
collected during the study, which required students to
report the amount of time that they spent studying and
programming outside the class lectures. Students were
required to fill out a study and programming activities
journal (Appendix G) in class on a weekly basis. Preparing
the activity journal during class time room offered the
advantage of providing consistency in instruction between

www.manaraa.com

44
subjects. To minimize student manipulation of the journal
data directions were provided with the activity journal,
which informed students that the activity data collected
from the journal would not influence their grade.

These weekly study and programming activity journal
data were used to measure the amount of time spent studying,
programming or debugging their assignments. In addition,
students were required to report any communication or
assistance received from other students, tutors or faculty
members. This evidence was reviewed to determine the extent
to which communication with individuals outside the scope of
the study, and between the various treatment groups during
the debugging treatment may have posed a threat to validity
of the study.

Note that the reliability and validity of the
programming activities journal data gathered could be
influenced by: (a) the student's ability to accurately
recall the previous week of study and programming activities
and (b) the student's desire to distort the data to
influence their grade. External verification of the activity
journal data was limited.

A fourth limitation of the study design was the lack of
ability to control the student use of the interactive
program debugger in the BASIC programming courses. The
Microsoft QuickBASIC course text book provided a complete,
student version of the QuickBASIC programming language,

www.manaraa.com

45
which included an interactive debugger option. A faculty
survey on the use of interactive program debuggers (Laverty,
1990) showed that an interactive debugger had not been used
in previous BASIC programming courses at the University of
Pittsburgh. Data from the activity journals provided
evidence that actual student use of the QuickBASIC
interactive debugger outside the scope of the study was
insignificant.

Limiting student access to the COBOL interactive program
debugger presented minimal control problems. Access to the
COBOL interactive program debugger was only available from
the Robert Morris College's network and was restricted by an
individual student's password.

The fifth limitation of this research design was the
threats to internal validity posed by a posttest-only
research design. A posttest-only research design fails to
control for selection, history and maturation of the
subjects (Issac, & Michael, 1981). However, the threats to
internal validity of a posttest-only design were considered
to be less than the testing effects of the alternative
pretest design. It was expected that the more a student
practices debugging a program the more proficient they
become.

www.manaraa.com

46
Subjects

Students in two sections of CI201 Business Programming,
offered by the Computer Information Systems Department of
Robert Morris College, participated in the COBOL programming
language section of this study (see Table 9). This group of
students represented approximately one half of the students
enrolled in the CI201 Business Programming course taught at
the Moon Township campus in the Winter Term of 1992 (n=40).
Students in two sections of CS4/007 BASIC Programming,
offered by the Computer Science Department of the University
of Pittsburgh, participated in the BASIC programming
language section of this study (see Table 9). This group of
students represented approximately 15 percent of the
students enrolled in CS4/007 BASIC Programming course taught
at University of Pittsburgh's main campus (n=45). Only
students meeting minimal attendance standards during the
semester and the treatment period were used in the study.
The same instructor conducted all four course sections in
the study.

All sections were offered during the daytime, and no
student was enrolled in more than one section. Based upon
prior registration experience the demographic and background
characteristics of the Robert Morris College and the
University of Pittsburgh students were expected to be
comparable.

www.manaraa.com

47

Table 9
Alternative Instructional Formate

Instructional
Section Description

1 COBOL Programming Traditional (SECT1)
[Robert Morris College, n=20]

2 COBOL Programming Interactive (SECT2)
[Robert Morris College, n=20]

3 BASIC Programming Traditional (SECT3)
[University of Pittsburgh, n=23]

4 BASIC Programming Interactive (SECT4)
[University of Pittsburgh, n=22]

The CI201 Business Programming course is described in
the Robert Morris College course catalog as "an introduction
to structured COBOL and programming techniques. Logical
structure, modular design and documentation techniques are
presented. The student becomes familiar with the syntax and
logic of COBOL by applying the language to a sequence of
increasingly complex business applications." A computer
literacy course is a prerequisite for this class. The COBOL
participants in this study used SPFPC, a microcomputer
editor, to write their COBOL programs. The COBOL
participants were then required to translate their COBOL
source programs into executable code using MicroFocus COBOL,
a microcomputer ANSI 85 program checker, as installed on

www.manaraa.com

48
Robert Morris College's Novell network. Students were unable
to translate or execute their COBOL programs at home.

The CS4/007 Basic Programming course is described in the
University of Pittsburgh's course catalog as "the first
course in computer science. It is designed to be of special
interest to students majoring in one of the social sciences
or humanities." No prerequisite computer science courses
were required for this course. The BASIC programming
participants prepared and executed their BASIC source
programs using Microsoft QuickBASIC's editor and
interpreter. The course text included a student version of
Microsoft's QuickBASIC, which students could have used at
home. The BASIC programming students also could have used
the University of Pittsburgh's Novell network located in the
computer laboratories to prepare and execute QuickBASIC
programs.

Initial COBOL and BASIC class size was 28 and 35
students, respectively. Classroom attendance data and
program assignment grades were collected and monitored.
Minimum classroom attendance and program assignment
performance were necessary to determine the effects of the
debugging treatment. Students below minimum attendance and
assignment standards were not be used in the study. After
adjusting for mortality, the size for each of the four
language treatment/language groups ranged from 20 to 23
students.

www.manaraa.com

49
The experienced mortality rate for each section was not

greater than the normal mortality rate found in previous
BASIC and COBOL courses taught at the University of
Pittsburgh and Robert Morris College. However, the level of
field independence and prior programming experience were
greater for those students who remained in the study than
those students who had either dropped the course or who were
rejected from the study for not meeting minimal selection
criteria. While presenting the debugging treatment earlier
in the semester may have decreased the rate of mortality,
the timing of the debugging treatment was not addressed in
this study.

It is important to determine the appropriate sample
size adequate to compare the effects of the interactive and
traditional debugging treatments and to specify how large of
a difference was "statistically" and "practically"
acceptable (Levin, 1975). Considering the nature of a quasi-
experimental research design, the moderate sample size and
opportunity cost of the additional instructional time
necessary to present the interactive program debugger, a
reasonably large treatment effect would have been necessary
to be of practical significance. Since the sample size
available for the study was fixed, sample size and power
calculations were, necessarily, of a post hoc nature. Using
Cohen's (1969) guidelines, the .38 standard deviations
difference which was found between the interactive and the

www.manaraa.com

50
traditional debugging posttest mean score (LOCCOR) would be
considered a "medium" effect size.

For most experiments the Pearson and Hartley power
charts (1951) can be used to determine the statistical power
of a test for a specified sample size, observed effect size
and level of significance. The power of a test is the
"probability of rejecting the null hypothesis, when the
alternative hypothesis is true" (Kirk, 1968, p.3). The
statistical power of a test is equal to one minus the
probability of a Type II error (Kirk, 1968).

Since the prime interest of this study was to study the
effects of interactive and traditional debugging tools, the
statistical power of this contrast was important. The size
of the sample used in this study to compare the use of the
program debugging tool was approximately 40 participants.
The Pearson and Hartley power charts (1951) were used to
determine the level of statistical power provided by a test
of a fixed sample size of 40. To use the Pearson and Hartley
power charts (1951) the level of significance, the degrees
of freedom and a noncentrality parameter, phi, must be
specified. In this study, a .05 level of significance was
used to test the statistical hypotheses.

Since an accurate estimate of the population variances
was not available from previous research, an alternative
formula for phi, developed by Kirk (1968) was used. Given
the observed .38 standard deviation units found between the

www.manaraa.com

51
debugging test scores, the value of phi was calculated to be
1.69. Using this phi value and the Pearson & Hartley power
chart, the statistical power of the F Test was estimated to
be .86. Given an effect size of .38 standard deviations and
a statistical power of .86, it was estimated that there was
an .86 probability of rejecting the null hypothesis when the
null hypothesis is in fact false. In other words, if a
program debugging tool treatment effect did exist, the
F Test had an 86% chance of detecting this effect.

Inafcrustlpnal Material?

The design of the CI201 Business Programming course
outline, syllabus and prerequisite materials was based upon
the Robert Morris CIS Departmental syllabus and course text.
The CI201 Business Programming course outline, syllabus
(Appendix D) and prerequisite materials that were used in
the study are those that were currently being used by
faculty members of the Robert Morris CIS Department.

The design of the Computer Science BASIC Programming
course outline, syllabus and prerequisite materials was
based upon the University of Pittsburgh Computer Science
Departmental syllabus and course text. The CS4 BASIC
Programming course outline, syllabus (Appendix E) and
prerequisite materials that were used in the study are those

www.manaraa.com

52
that were currently being used by faculty members of the
University of Pittsburgh Computer Science Department.

Faculty members from the Robert Morris College Computer
Information Systems department and the University of
Pittsburgh Computer Science department were be asked to
review the course outline, schedule and instructional
material to determine if: (a) The course content was
appropriate for the level of debugging skills tested, (b)
the sequence of the course material was appropriate to teach
programming debugging skills to be tested, and (c) whether
there was adequate instructional time assigned to the
program debugging instructional task that would permit
students to learn debugging techniques.

Based upon the recommendation of interviewed faculty
members, the amount of instructional time allocated to the
concepts of program debugging was slightly increased.
Faculty members from the Robert Morris College Computer
Information Systems department and the University of
Pittsburgh Computer Science department also were asked to
review the modified computer debugging instructional
materials for each language-treatment group. These faculty
members did concur that these materials ensured a
comprehensive instructional program. At the recommendation
of the faculty members at both schools, the timing of the
debugging instructional treatment was postponed from the

www.manaraa.com

53
tenth week of the semester to the thirteenth week of the
semester.

Separate pilot groups of COBOL and BASIC programming
students were presented with the modified instructional
materials in a classroom environment, subsequently
interviewed, and asked to make recommendations that would
have improved the quality of the program debugging
instructional materials. No significant changes to the
debugging instructional materials were necessary.

Prpseflures
Table 10 outlines the procedures used to administered

the tests and treatments during the study.

www.manaraa.com

54

Table 10
Schedule of Surveys end Tests Used in the Study

Week 3 Pre-Course Student Survey Appendix F
Weeks 3 Student Activity/Programming Journal Appendix G
thru 14
Week 7 Prerequisite Test One
Week 10 Group Embedded Figures Test
Week 11 Prerequisite Test Two
Week 13 Prerequisite Test Three
Week 13 Debugging Treatment
Week 15 Post-Experiment Appendices H&I

Program Debugging Test

Before the semester began, the proposal for this
project was approved by the departmental chairperson of the
Computer Information Systems department at Robert Morris
College and the departmental chairperson of the Computer
Science Department at the University of Pittsburgh.

A Student Background Survey (Appendix F) was
administered to the students during the third week of the
course.

Students were required to fill out a study and
programming activities journal (Appendix G) in class on a
weekly basis. The journal data were collected from the third
week until the fourteenth week of the semester.

www.manaraa.com

55
The Group Embedded Figures Test (Witkin, et al., 1971)

was administered during the tenth week of the semester. The
three program language prerequisite tests were administered
to students during the seventh, eleventh and thirteenth
weeks of the semester. Students were required to take any
make-up tests within one week of the original test date.
Test results were not returned to students until all make-up
tests had been administered.

During the thirteenth and fourteenth week of the
semester students received lecture, instructional materials
and in-class program debugging exercises designed for each
debugging treatment and programming language. An out-of-
class program debugging exercise was assigned to students to
provide hands-on computer programming debugging skills
practice for each debugging treatment. This out-of-class
program debugging exercise was graded by the instructor and
constituted five percent of their final grade for the
course. Students not completing this computer debugging
skills assignment satisfactorily (an 80% grade) were not
used in the study since it was considered that they were not
adequately exposed to full debugging treatments from which
valid conclusions could have been reached.

After the debugging treatment, a program debugging
posttest (Appendices H & I) was administered to the students
in the fourteenth week of the semester. This test was

www.manaraa.com

56
conducted during normal class time in a computer equipped
classroom. All test work was performed on the computer.

Instruments

Pre-course survey
A Pre-Course Background Survey (Appendix F) was

administered to all students to gather basic demographic and
computer background information, including prior programming
experience.

Studying and programming activity journal
Students were required to fill out a study and

programming activities journal (Appendix G) in class on a
weekly basis. Data gathered from this journal were used to
measure the amount of time students spent debugging programs
during the debugging treatment and also provided evidence to
help answer research question two.

Program language prereguisite test
The ability to prepare a program using the required

syntax rules for a given programming language is an
essential prerequisite skill to debug program logic errors.
Data gathered from the program language prerequisite tests
were used to measure the student's mastery of prerequisite
programming skills.

www.manaraa.com

57
Standardized test items designed for the specific

versions of MicroFocus's COBOL and Microsoft's QuickBASIC
were not available. Objective test questions were selected
from previously administered tests used in other CI201
Business Programming and CS4 BASIC program courses. The
program language prerequisite tests were reviewed by Robert
Morris College CIS and University of Pittsburgh Computer
Science faculty members to assess content validity. No
changes to the prerequisite tests were recommended.

Three program language prerequisites tests were
administered to students in each section of CI201 Business
Programming on three different test dates. Three different
program language tests were administered to students in each
section of CS4 BASIC on three different test dates.

The objective of the first program language
prerequisite test was to measure the basic program
development process and elementary syntax rules for each
respective programming language. The objectives of the
second and the third tests were to measure
advanced syntax rules and fundamental programming
algorithmic skills, e.g., accumulation, high-low, etc.
Except for the adjustments for differences in syntax, the
test objectives were the same for both programming
languages.

The program language prerequisite tests also were
administered to two pilot groups of COBOL and BASIC

www.manaraa.com

58
programming students prior to being administered to the
participants. The results of the pilot test were analyzed by
the Test Analysis program provided by the University of
Pittsburgh's Office of Measurement and Evaluation. The pilot
test items were reviewed to determine if: (a) the difficulty
index was greater than ninety percent or less than ten
percent or (b) the point biserial discrimination coefficient
was less than zero. Based upon the results of this pilot
test, seven questions were rewritten. Three other test items
were retained in spite of the poor statistical performance
since each question tested an important prerequisite skill.
Data collected from the pilot language prerequisite tests
were not used in the study.

Students were assigned a letter grade for their
performance on the program language prerequisite test. This
grade constituted 20% of their final grade for the course.

Program debugging test
Two program debugging posttests (Appendices H & I) were

developed for each computer language. The same test was
administered to both the interactive and the traditional
sections in each respective programming language. This test
was designed to measure: (a) the ability to locate and
correct a program logic error (LOCCOR) and (b) the time to
locate and correct a program logic error (TIMECOR). Data

www.manaraa.com

59
gathered from the program debugging test assisted in
answering all of the research questions.

The first step used in the construction of computer
program debugging test was to interview faculty members of
Robert Morris College CIS department and University of
Pittsburgh Computer Science department to document the
frequency and severity of program logic errors encountered
by student programmers in an entry level computer
programming course. Course texts also were reviewed to
provide information concerning the nature and frequency of
logic errors encountered by student programmers. Data were
ranked ordered by frequency and were used to select program
debugging tasks to be measured by the program debugging
test.

Two pilot program debugging posttests were reviewed by
Robert Morris College CIS and University of Pittsburgh
Computer Science faculty members. These faculty members also
determined whether the program documentation was adequate,
clear and appropriate to complete the programming and
debugging task for each program on the test.

The program debugging posttests were administered to a
pilot group of CI201 Business Programming and CS4 BASIC
students. Based upon the results of the pilot debugging
test, the maximum time allocated to each test question was
increased from twenty minutes to forty minutes. Data

www.manaraa.com

60
collected from the pilot program debugging test were not
used in the study.

The program examples and test examples were identical
for all treatment groups, except adjustments made for the
programming syntax requirements of each respective
programming language. Logic errors caused by incorrect
program syntax usage, e.g., misplaced period in a COBOL IF
statement block, were not used.

Each debugging posttest consisted of five programs. The
first program contained one simple logic error, e.g.,
failure to execute a statement within a loop. The second and
third programs contained a more difficult logic error, e.g.,
incorrect sequence of statements. The fourth and the fifth
programs contained two logic errors that interacted.

The computer debugging posttest was administered in a
computer-equipped classroom. At the beginning of the
debugging test, the test administrator provided each student
with a floppy disk, containing the program source code and
the input data file.

Each test program was be accompanied by appropriate
program documentation. Using the guidelines developed by
Nickerson (1986), the documentation provided to each student
included:

1) a printed copy of the source program,
2) a printed copy of the input data file,
3) the description of the program requirements,

www.manaraa.com

61
4) the description of the effects of the program

logic error (cued recall format),
5) the current, incorrect printed outputs of the

program, and
6) the required, correct printed outputs of the

program.
All debugging test activities were performed on the
computer.

Using the Pierson and Horn study (1984) as a guideline,
the source programs used in the debugging post test were
reviewed to ensure that no syntax errors were present. Each
program was compiled (checked) and executed to ensure that
only logic errors remained. None of the programs contained
any syntax or execution errors. All test programs executed,
but produced incorrect results.

Each section of the test was limited to forty (40)
minutes for each debugging requirement before the student
was required to continue to the next test program. At the
end of each program section of the test, each student was
required to fill out an answer-journal sheet. The student
was required to describe the logic error found and to
identify the debugging tools and methodology that they used
to locate and correct the logic error. Students also were
required to report the value of the debugging tool used on a
rating scale that ranged from: one (1) not used, two (2)
slight value, to five (5) very valuable.

www.manaraa.com

62
Students were permitted to write on any of the printed

documentation. Each student's program disk was collected
after the test had been completed and was graded by the
instructor to determine if the logic error had been
successfully located and corrected. Each program was
subsequently executed by the instructor to determine if the
required program debugging tasks had been successfully
completed. The operating system date/time stamp, stored with
the program file name when the program file was last
changed, was used to measure the amount of time spent to
successfully locate and correct a program logic error
(TIMECOR). The operating system date/time stamp also was
used to ensure that students did not work on programs
different from the assigned test sequence. Students who did
not successfully locate and correct a program logic error
were assessed forty (40) minutes, the maximum test time per
debugging program.

Scoring schemes for the program debugging test were
based upon the ones used by Cavaiani (1979) in his study of
debugging program syntax and logic errors. A weighting
system representing three different scoring criteria was
used: (a) Failed to locate the error, (b) located the error
and failed to correct the error, and (c) located the error
and corrected the error. The weights for each test program
increased as the complexity of the debugging task increased
(see Table 11).

www.manaraa.com

63

Table 11
Weighting Scale used in the

Debugging Posttest

Program Weight
Failed to
Locate

Located
Error

Correct
Error

Max.
Points

1 1 0 3 5 8
2 3 0 3 5 8
3 3 0 3 5 24
4 5 0 3 5 40
5 5 0 3 5 40

Students were assigned a letter grade based upon their
performance on the debugging test. This grade constituted
15% of their final grade for the course.

All programming students and professional programmers
need to be able to locate and correct a logic error within a
computer program. The program debugging tests attempted to
duplicate this cognitive task. The debugging test programs
and documentation represented the kind of conditions that
typically would be encountered by a student or professional
programmer.

Data Sources

The data for this study was obtained from a pre-course
survey, student activity journals, prerequisite tests, the
Group Embedded Figures Test, the Debugging test score and

www.manaraa.com

64
time. The variables used in this study are listed in Table
12.

Table 12
List of Variables and their Coding schemes Used in the Study

Variable Label Description and Coding
LANGUAGE Programming language taught in

class section: COBOL coded 0,
BASIC coded 1.

TREATMENT Type of computer debugging
treatment used in class section:
Interactive program debugger coded
0, and Traditional program
debugging coded 1.

8ECT1 Students enrolled COBOL section
receiving the traditional
debugging treatment.

SECT2 Students enrolled COBOL section
receiving the interactive
debugging treatment.

SECT3 Students enrolled BASIC section
receiving the traditional
debugging treatment.

8ECT4 Students enrolled BASIC section
receiving the interactive
debugging treatment.

www.manaraa.com

65

Table 12 (cont.)
List of Variables and thair coding Schemas

Used in the Study

Variable Label Description and Coding
AGE Current age of the participant, g

coded in years.
8EZ Gender: male coded 0,

female coded 1.
CREDITS Total number of college credits

earned before the current course.
MAJOR Major field of study: Undeclared

coded 0, Social Science coded 1,
Business coded 2, Math coded 3,
Engineering coded 4, and Computer
Science coded 5, Natural Sciences
coded 6, Other coded 7.

MINOR Major field of study: Undeclared
coded 0, Social Science coded 1,
Business coded 2 , Math coded 3 ,
Engineering coded 4, and Computer
Science coded 5, Natural Sciences
coded 6, Other coded 7.

www.manaraa.com

66

1 Table 12 (cont.)
I List of Variables and their Coding Schemes
| Used in the Study

Variable Label Description and Coding
BASIC Number of high school or college

BASIC programming courses
previously taken by student prior
to course: Coded zero for none.
Coded 1 for one course, coded 2
for two courses, etc.

COBOL Number of high school or college
COBOL programming courses
previously taken by student prior
to course: Coded zero for none,
Coded 1 for one course, coded 2
for two courses, etc.

OTHER Number of high school or college
programming courses other than
BASIC or COBOL previously taken
by student prior to course: Coded
zero for none, Coded 1 for one
course, coded 2 for two courses,
etc.

PROGEXP Total number of high school or
college programming courses
previously taken by student prior
to the course.

www.manaraa.com

67

Table 12 (cont.) 1
List of Variables and their Coding Schemes Used In the Study

Variable Label Description and Coding
APPLE Pre-course experience in using

an Apple computer: No experience
coded zero, and any experience
coded 1.

MACINTOSH Pre-course experience in using
a MACINTOSH computer: No experience
coded zero, and any experience
coded 1.

IBM Pre-course experience in using
an IBM-compatible computer: No
experience coded zero, and any
experience coded 1.

OTHER Pre-course experience in using
any other computer: No experience
coded zero, and any experience
coded 1.

MICROEXP Pre-course length of time
respondent has used a
microcomputer: coded in total
months, 0 for no previous usage,
1 for one month previous usage, 2
for two months previous usage, etc.

www.manaraa.com

68

Table 12 (cont.)
List of Variables and thsir Coding Schemes

Used in the Study

Variable Label Description and Coding
SPREADSHEET Pre-course experience in using

microcomputer spreadsheet package:
No experience in using a
microcomputer spreadsheet software
coded 0, and any microcomputer
spreadsheet software experience
coded 1.

VORDPROCESSING Pre-course experience in using
microcomputer wordprocessing
packages: No experience in using a
microcomputer wordprocessing
software coded 0, and any
microcomputer wordprocessing
software experience coded 1.

HOME Best description of home computer
usage prior to course: No computer
used at home coded 0, computer at
home used mostly for pleasure,
e.g., video games coded 1, Computer
at home used mostly for word
processing and spread sheets coded
2, computer at home used mostly for
writing programs coded 3, and
computer at home mostly used for
other reasons coded 4.

WORK Best description of work computer
usage prior to course: No computer
used at work coded 0, computer at
work used mostly for mostly for
word processing and spread
sheets coded 1, Computer at work
used mostly for writing programs
coded 2, and computer at home N
mostly used for other reasons coded H
3. |

www.manaraa.com

69

H Table 12 (cont.)
B List of Variables and their Coding Schemes I Used in the Study

Variable Label Description and Coding
REQUIRED This course is not a required

course for student coded 0. This
course is a required course for
major coded 1.

COMPINT Student is not interested in
learning more about computers coded
0. Student is interested in
learning more about computers coded
1.

PROGINT Student is not interested in
learning about computer programming
coded 0. Student is interested in
learning more about computer
programming coded 1.

HOURS WORK Number of hours of employment/work
per week for each student. Coded to
the nearest hour.

ATTENDANCE Number of classes missed by
students, coded percent of classes
missed.

www.manaraa.com

70

Table 12 (cont.)
List of Variables and their Coding Schemes Used in the Study

1Variable Label Description and Coding
TE8T1 Program language prerequisite test 1 |

questions score, coded percent |
correct. |

TEST2 Program language prerequisite test 2 |
questions score, coded percent
correct.

TEST3 Program language prerequisite test 3
questions score, coded percent
correct.

PREREQ Total of program language
prerequisite questions score, coded
percent correct.

www.manaraa.com

71

Table 12 (cont.)
List of Variables and thair Coding Schemes

Usad in the Study

1 Variable Label Description and Coding
I DEBUGS1 Debugging score for test program

one, question 1, coded 0 points for
failure to locate error, 3 points
located error but failed to
correct, 8 points located and
corrected error.

DEBUGS2 Debugging score for test program
two, coded 0 points for failure to
locate error, 9 points located error
but failed to correct, 24 points
located and corrected error.

DEBUGS3 Debugging score for test program
three, coded 0 points for failure to
locate error, 9 points located error
but failed to correct, 24 points
located and corrected error.

DEBUG84 Debugging score for test program
four, coded 0 points for failure to
locate error, 15 points located
error but failed to correct, 40
points located and corrected error.

DEBUGS5 Debugging score for test program
five, coded 0 points for failure to
locate error, 15 points located
error but failed to correct, 40
points located and corrected error.

LOCCOR Total score for all debugging test
programs, coded total points
received for locating and debugging
program logic errors.

www.manaraa.com

72

Table 12 (cont.) 1
Liat of Variables and thair Codin? Schemas Used in the study

Variable Label Description and Coding
DEBUGT1 Time spent locating and correctly

debugging question one's logic
error, coded in minutes, unanswered
questions coded maximum time (40
minutes).

DEBUGT2 Time spent locating and debugging
question two's logic error coded in
minutes, unanswered questions coded
maximum time (40 minutes).

DEBUGT3 Time spent locating and debugging
question three's logic error, coded
in minutes, unanswered questions
coded maximum time (40 minutes).

DEBUGT4 Time spent locating and debugging
question four's logic error, coded
in minutes, unanswered questions
coded maximum time (40 minutes).

DEBDGT5 Time spent locating and debugging
question five's logic error, coded
in minutes, unanswered questions
coded maximum time (40 minutes).

TIMECOR
Total time spent locating and
debugging all test questions' logic
errors coded in minutes, no
questions answered coded maximum
time (200 minutes).

www.manaraa.com

73

Table 12 (cont.)
List of Variables and their Codin? Schemes

Used in the Study

Variable Label Description and Coding 1
GEFT SCORE Score on GrouD Embedded Fiaures |

Test, coded zero to 18.
FIELD TYPE Degree of Field Dependence based

upon the GEFT SCORE, coded:
0 Field Dependent for GEFT SCORE
zero thru 8 inclusive,

1 Indeterminate for GEFT SCORE
9 thru 11 inclusive, and

2 Field Independent for GEFT
SCORE 12 thru 18 inclusive.

www.manaraa.com

RESEARCH FINDINGS

Introduction
In this chapter, the results of the research questions

as outlined in Chapter II are discussed, beginning with a
discussion of the data transcription tools and statistical
software used to collect and analyze the data. This
discussion is followed by a demographic profile of the
students, descriptive statistics, the analysis of the
prerequisite tests and debugging posttests, and presentation
of the criteria used to select the covariates. The results
of Analysis of Covariance for each research question are
presented, and this section is concluded with a secondary
analysis of each posttest program debugging task.

Data transcription and statistical software
Q&A version 3.0 (Q&A User's Manual, 1988), a

microcomputer data entry and database software package, was
used to record the research data prior to transferring
(exporting) it to SAS (SAS/STAT User's Guide, 1988), a
statistical, software package. All descriptive statistics
and statistical analysis of the research data were performed
using SAS microcomputer version 6.03.

74

www.manaraa.com

75
Demographic Profile

Forty Robert Morris students enrolled in two sections
of CI201 Business Programming (SECT1 & SECT2) and forty-five
University of Pittsburgh students enrolled in two sections
of CS4/007 BASIC Programming (SECT3 & SECT4) participated in
this study. As shown in Table 14, the average age of all the
participants was 21.2 years and represented all college
undergraduate class levels, freshmen through seniors (see
Tables 15 and 16). Males comprised 57.6% of the participants
(see Table 13). With the exception of one group (SECT4) the
proportion of males and females were approximately the same.

1 Table 13
8BX OF THE PARTICIPANTS

SECTl SECT2 SECT3 SECT4 ALL
Male 10 12 11 16 49

50% 60% 50% 69.5% 57.6%
Female 10 8 11 7 36

50% 40% 50% 30.5% 42.4%

Table 14
AGE OF PARTICIPANTS

SECTl SECT2 SECT3 SECT4 ALL
Mean 21.85 22.25 20.32 20.83 21.27
Standard
Deviation

1.42 2.51 2.06 2. 37 2.24

Minimum 20.00 20.00 18.00 19.00 18.00
Maximum 26.00 30.00 28.00 28.00 30.00

www.manaraa.com

76

Table 15
Numbsr of College credits
Taken Prior to Course

SECTl SECT2 SECT3 SECT4 ALL
Mean 67.9 70.0 48.4 42.2 56.45
Standard
Deviation

22.7 15.8 35.5 28.3 29.13

Minimum 15 47 13 8 8
Maximum 104 106 106 104 106

Table 16
Humber of Students

Classified by Collegiate Year

SECTl SECT2 SECT3 SECT4 ALL
FRESHMAN 1 0 9 8 18

5% 0% 40.9% 34.7% 21.1%
SOPHOMORE 5 5 6 9 25

25% 25% 27.2% 39.1% 29.4%
JUNIOR 12 14 4 3 33

60% 70% 18.1% 13.0% 38.8%
SENIOR 2 1 4 2 9

10% 5% 18.1% 8.6% 10.6%

As shown in Table 17, only one (1) student who
participated in the experiment was declared a Computer
Information Science or Computer Science major. This low
proportion of computer-related majors was expected for
several reasons. First, many Computer Information Science
majors at Robert Morris College have historically
transferred the equivalent of CI201 Business Programming
credits from local community colleges, or otherwise would

www.manaraa.com

77
have taken the course in the FALL semester rather than the
Winter semester when the experiment was conducted. Second,
the majority of the students enrolled in CI201 Business
Programming at Robert Morris College were Accounting and
Finance majors, and this programming course was required for
their respective major. Third, the University of
Pittsburgh's Computer Science majors were discouraged from
enrolling in the CS4/007 BASIC course. This course was
specifically designed to be a service course for non-
Computer Science Majors.

Table 17
MAJOR

SECTl SECT2 SECT3 SECT4 ALL
Undeclared 0 0 7 7 14

0.0% 0.0% 31.8 30.4% 16.4%
Social 0 0 0 1 1Science 0.0% 0.0% 0.0 4.3% 1.1%
Business 19 20 2 4 45

95% 100% .9% 17.3% 52.9%
Mathematics 0 0 0 0 0

0.0% 0.0% 0.0% 0.0% 0.0%
Engineering 0 0 4 2 6

0.0% 0.0% 18.1% 8.7% 7.0%
Education 0 0 0 0 0

0% 0.0% 0.0% 0.0% 0.0%
Computer 1 0 1 3 4Science 5% 0.0% 4.5% 13% 4.7%
Natural 0 0 8 6 14Sciences 0.0% 0.0% 36.3% 26% 16.4%

www.manaraa.com

78
As shown in Table 17, the majority of the participants

of the study were business majors (52.9%). Natural science
majors (16.4%) or undeclared majors (16.4%) represented the
majority of the remaining participants. As reported in Table
18, approximately seventy-nine percent (78.8%) reported that
this programming course was required for their major.
Seventy-four (74.2%) of the participants reported some
interest in learning computers prior to the course and
sixty-two (62.4%) reported some interest in learning how to
program a computer prior to enrolling in the course.

Table 18
Prior Computer and Programming interest

Required Course SECTl SECT2 SECT3 SECT4 ALL
No 2 4 6 6 18

10% 20% 27.2% 26% 21.2%
Yes 18 16 16 17 67

90% 80% 72.8% 74% 78.8%

interest inComputers
None 3 5 8 6 22

15% 25% 36.3% 26% 25.8%
Some 17 15 14 17 63

85% 75% 64.7% 74% 74.2%

| Interest in| Programming
None 6 9 8 9 32

30% 45% 36.3% 39.1% 37.6%
Some 14 11 12 14 53

70% 55% 73.7% 61.9% 62.4%

www.manaraa.com

79
Only four (4) students had no microcomputer experience

prior to the study and the average microcomputer usage
experience was slightly over two years (see Table 19).
Twenty-seven percent (27%) of the participants had
successfully completed a previous course in the BASIC
programming language, five percent (5%) had taken a previous
course in PASCAL, and no participants had taken a previous
COBOL course (see Tables 20 and 21).

Table 19
Microcomputer Usage Experience (in months)

SECTl SECT2 SECT3 SECT4 ALL
Mean 32.65 38.65 19.09 22.96 27.93
Standard
Deviation

16.47 16.47 25.23 29.03 25.47

Minimum 6.00 7.00 0.00 0.00 0.00
Maximum 66.00 96.00 84.00 96.00 96.00

www.manaraa.com

80

Table 20
Prior Computer Usage Experience
Classified by Computer Type

APPLE SECT1 SECT2 SECT3 SECT4 ALL
No Experience 15 14 16 17 62

75% 70% 72.7% 73.9% 72.9%
Experience 5 6 6 6 23

25% 30% 33.3% 32.1% 33.1%MACINTOSH
No Experience 19 20 17 15 71

95% 100% 77.2% 65.2% 83.5%
Experience 1 0 5 8 14

5% 0.0% 32.8% 34.8% 16.5%
IBM Compatible
No Experience 0 0 10 8 18

0.0% 0.0% 45.4% 34.7% 21.1%
Experience 20 20 12 15 67

100% 100% 54.6% 63.3% 78.2%
other computers
No Experience 19 18 21 20 78

95% 90% 95.4% 90.9% 91.7%
Experience 1 2 1 3 7

5% 10% 4.6% 9.1% 8.3%

Table 21
Number of Programming Languages Taken Prior to Study (PROGEXP)

SECT1 SECT2 SECT3 SECT4 ALL
Mean .45 .60 . 36 .35 .44
Standard
Deviation

.60 .75 .58 .49 .61

Minimum 0 0 0 0 0
Maximum 2 2 2 1 2

www.manaraa.com

81

Table 22
Previous Courses in Programming Languages Classified by Language

BASIC SECT1 SECT2 SECT3 SECT4 ALL
No courses 15 14 16 17 62

75% 70% 72.7% 73.9% 72.9%

At least
one course 5 6 6 6 23
or prior 25% 30% 27.3% 26.1% 27.1%
experience

COBOL
No Courses 20 20 22 23 85

100% 100% 100% 100% 100%
At least
one course 0 0 0 0 0
or prior 0.0% 0.0% 0.0% 0.0% 0.0%
experience

OTHER COURSES
No Courses 16 14 20 21 81

80% 70% 90.9% 91.3% 95.2%

At least one
1 course or 4 6 2 2 4

prior 20% 30% 9.1% 8.7% 4.8%
1 experience

As shown in Table 23, approximately seventy-one percent
(70.6%) of the participants had previous experience in the
use of wordprocessing software packages, e.g., WordPerfect,
and approximately fifty-two percent (51.8%) had previous
experience in the use of spreadsheet software packages,
e.g., LOTUS. As shown in Table 24, approximately fifty-one
percent (51.8%) of the participants owned a home personal

www.manaraa.com

computer, which they predominately used for wordprocessing
or to prepare spreadsheets. Only twenty-three percent of the
participants had previously used a computer at work.
Computer work experience was generally limited to
wordprocessing and the preparation of spreadsheets.

Table 23
Other Computer Software Experiences

Prior to Study

Spread Sheet SECT1 SECT2 SECT3 SECT4 ALL
No Experience 1 2 19 19 41

5% 10% 86.3% 82.6% 48.2%
Experience 19 18 3 4 44

95% 90% 16.7% 17.4% 51.8%

Word Processing
No Experience 4 3 6 12 25

20% 15% 27.2% 52.1% 29.4%
Experience 16 17 16 11 60

80% 85% 72.8% 51.9% 70.6%
Other Formal Training
No Training 18 19 21 22 80

90% 95% 95.4% 95.6% 94.1%
Some Training 2 1 1 1 5

10% 5% 4.6% 4.4% 5.9%

www.manaraa.com

Table 24
| Prior Home and Work Computer Usage

HOMECOMP SECT1 SECT2 SECT3 SECT4 ALL
No Usage 12 7 11 11 41

60% 35% 50% 47.8% 48.2%
Pleasure 0 4 2 5 11

0.0% 20% 9% 21.7% 12.9%
Word
Processing/ 8 7 10 5 30
Spreadsheets 40% 35% 45.4% 21.7% 35.2%
Programming 0 2 1 2 5

10% 4.5% 8.6% 5.8%
Other 0 0 0 0 0

0.0% 0.0% 0.0% 0.0% 0.0%
WORKCOMP
No Usage 16 15 18 19 65

80% 75% 81.8% 82.6% 76.4%
Word
Processing/ 4 3 3 4 14
Spreadsheets 20% 15% 13.6% 17.4% 16.4%
Programming 0 0 1 0 1

0.0% 0.0% 4.5% 0.0% 1.1%
Other 0 2 0 0 2

0.0% 10% 0.0% 0.0% 2.3%
Field dependence, as defined previously, "refers to a

consistent mode of approaching the environment in analytical
as opposed to global terms. It denotes the ability to
articulate figures as discrete from their backgrounds and an
ability from disembedding contexts" (Nessick, 1977, p. 14).
The Group Embedded Figures Test (GEFT) was used to measure
the level of field dependence.

www.manaraa.com

84
The mean score on the GEFT was 11.58 with a standard

deviation of 4.35 (see Table 25). These results were similar
to norming studies used to develop the test (Witkin, et al.
1971, p. 28, mean = 11.4, standard deviation = 4.15). Using
the mean score of the GEFT and the standard deviation of
approximately +/- .5, the participants were assigned to one
of three groups: Field Dependent (GEFT score from zero to
ten inclusive), Indeterminate (GEFT score eleven through
thirteen inclusive), or Field Independent (GEFT score from
fourteen to eighteen inclusive). Field Dependent individuals
represented 33% of the participants. Field Independent
represented 41% of the participants and 26% of the
participants were classified as Indeterminate
(see Table 26).

Table 25
Group Embedded Figures Test

(GEFT)

SECT1 SECT2 SECT3 SECT4 ALL
Mean 12.05 11.95 10.68 11.70 11.58
Standard Deviation 3.93 3.69 4.68 5.01 4.35
Minimum 5.00 6.00 3.00 2.00 2.00
Maximum 17.00 18.00 10.00 18.00 18.00

www.manaraa.com

85

Table 26
Field Independence and Field Dependence

SECTl SECT2 SECT3 SECT4 ALL
Field Independent 6 7 9 6 28

30% 35% 40.9% 26% 33.0%
Field Dependent 6 4 6 6 22

30% 20% 27.3% 26% 25.9%
Indeterninant 8 9 7 11 35

40% 45% 31.8% 48% 41.1%

The threats to internal and external validity caused by
the selection bias of intact groups has been previously
discussed. Comparisons of the differences in background and
demographic data found between debugging treatment and
control groups within each programming language, COBOL and
BASIC, were statistically insignificant (p>.05). However,
slight demographic and background differences were found
between the two schools. These differences between the
participants of the two different schools included: (a) the
COBOL participants were approximately one (1) year older
(see Table 14), (b) the COBOL participants were
predominately juniors and seniors; whereas, the BASIC
participants were predominately freshman and sophomores (see
Table 16), (c) all of the COBOL participants were business
majors; whereas, the BASIC participants represented a
variety of majors (see Table 17), (d) the COBOL participants
had more prior experience in using a microcomputer and in
the use of wordprocessing and spreadsheet packages (see

www.manaraa.com

86
Tables 19 and 20), and (e) more COBOL students worked at
outside employment during the study than BASIC students (see
Tables 27 and 28). None of these differences were found to
significantly correlate with any dependent variable (p>.05).

Table 27
Hours Vorksd psr Week by the Participant During Study

SECT1 SECT2 SECT3 SECT4 ALL
Mean 12.75 16.1 4.05 4.04 8.93
Standard
Deviation

10.04 12.34 8.41 8.36 11.03

Minimum 0 0 0 0 0
Maximum 30 40 30 28 30

Table 28
Number of Participants Who Worked During the Study

SECT1 SECT2 SECT3 SECT4 ALL
Students who
did not work 4

20%
6

30%
16

72.7%
17

73.9%
43
50.5%

Employed
Students

16
80%

14
70%

6
27.3%

6
22.1%

41
48.5%

www.manaraa.com

87
Results of the program language prerequisite tests

The ability to locate and correct a logic error in a
computer program required the mastery of syntax rules and
the development of algorithmic skills. Data gathered from
three program language prerequisite tests for each
programming language were used to measure the student's
mastery of prerequisite programming skills. Standardized
test items designed for the specific versions of
MicroFocus's COBOL and Microsoft's QuickBASIC were not
available. Three objective tests were developed for each
programming language.

The results of the prerequisite tests used in the study
were analyzed by the Test Analysis program provided by the
University of Pittsburgh's Office of Measurement and
Evaluation. The results of this analysis are shown in Table
29. A total of 123 test items were administered to the COBOL
participants and a total of 104 test items were administered
to BASIC participants on three different test dates. The
mean number of correct answers on the COBOL prerequisite
tests was 81.6 with a KR-20 reliability coefficient of .93.
The mean number of correct answers on the BASIC prerequisite
tests was 63 with a KR-20 reliability coefficient of .86.

The difference in the number of test items between each
programming language prerequisite test was attributable to
syntactical differences between the programming languages.

www.manaraa.com

88
All conceptual and algorithmic topics on the prerequisite
test between languages were the same.

| Table 29
1 Reliability Analysis of theProgram Language Prerequisite Tests

COBOL BASIC
TEST

1
TEST
2

TEST
3

ALL TEST
1

TEST
2

TEST
3

ALL

No. of Test Items 50 60 23 123 41 46 17 104

Mean TestItems
Correct

32. 0 38.1 12.0 81.6 27.9 25.9 9.40 63.0

Standard
Deviation

6.36 8.77 4.82 18.0 4.73 5.67 2.33 11.7

KR-20 .82 .87 .84 .93 .71 .75 .48 .86
No.of Test Items with
Negative Point
Biserial

1 1 0 2 1 3 2 6

No.of Test Items with
Difficulty
Index > .90

5 4 0 9 7 1 1 9

No.of Test Items with Difficulty
Index < .10

1 0 0 1 0 1 0 1

As shown in Table 30, the mean percentage test score
for all four treatment groups was approximately 61% with a
standard deviation of 12%. No significant differences in the
mean percentage test score between groups were found. The

www.manaraa.com

89
mean prerequisite test percentage for all four sections
declined from the highest mean prerequisite test percentage
on TEST1 to the lowest mean prerequisite test percentage on
TEST3 (see Table 31). These results were excepted since most
programming students have greater difficulty mastering
algorithmic concepts presented on the latter tests, rather
than syntactical concepts presented on the earlier tests.
Descriptive statistics for each individual prerequisite test
are shown in Tables 32, 33 and 34.

Table 30
Total Prerequisite Test Percentage Score

by Treatment Group

SECT1 8ECT2 SECT3 8ECT4 ALL
Mean 59.30 63.70 61.77 59.65 61.07
Standard Deviation 12.59 14.21 10.49 11.02 12.00
Minimum 38.00 41.00 40.00 45.00 38.00
Maximum 03 to • o o 92.00 81.00 80.00 92.00

Table 31
Comparison of Percentage Test

by Treatment Group
Score Mean

TEST 1 TEST 2 TEST 3 LOCCOR
SECTl 64.40% 59.70% 47.35% 59.30%
SECT2 62.00% 65.80% 52.40% 63.70%
8ECT3 68.41% 57.77% 55.64% 61.77%
8ECT4 67.43% 54.61% 54.22% 59.65%

www.manaraa.com

90

Table 32
Prerequisite Test 1 Percentage Score by Treatment Oroup

8BCT1 8BCT2 SECT3 SECT4 ALL
Mean 64.40 62.00 68.41 67.43 65.69
Standard Deviation 11.83 16.07 11.97 11.41 12.90
Minimum 42.00 26.00 37.00 51.00 26.00
Maximum 82.00 84.00 90.00 90.00 90.00

Table 33
Prerequisite Test 2 Percentage Score by Treatment Oroup

SECT1 8ECT2 8ECT3 8ECT4 ALL
Mean 59.70 65.80 57.77 54.61 59.26
Standard Deviation 13.41 16.87 11.97 13.12 14.24
Minimum 30.00 33.00 35.00 30.00 30.00
Maximum 83.00 95.00 76.00 76.00 95.00

Table 34
Prerequisite Test 3 Percentage Score

by Treatment Group

8ECT1 SECT2 8ECT3 8BCT4 ALL
Mean 47.35 52.40 55.64 54.22 52.54
Standard Deviation 19.28 23.35 13.55 14.65 17.87
Minimum 17.00 17.00 29.00 29.00 17.00

1 Maximum 83.00 100.0 76.00 82.00 100.0

www.manaraa.com

91
Descriptive- statistics of the program debugging test

Two program debugging posttests were developed for each
computer language (Appendices J and K). The same test was
administered to both the interactive and the traditional
debugging sections in each respective programming language.
This test was designed to measure: (a) the ability to locate
and correct a program logic error (LOCCOR) and (b) the time
to locate and correct a program logic error (TIMECOR).

An adequate test was unavailable to test the students
ability to debug logic errors in a COBOL and BASIC program.
The program debugging posttest used in this study was first
administered to a pilot group of students and subsequently
minor revision were made. The test was then administered to
the participants of this study.

Table 35
Total Computer Debugging Test Score

LOCCOR
(Maximum points = 136)

SECT1 8ECT2 SECT3 8ECT4 ALL
f Mean 78.8 94.8 75.3 93.1 85.53

Standard
| Deviation

51.3 41.4 43.6 43.8 45.14

Minimum 0 24 0 0 0
Maximum 136 136 136 136 136

www.manaraa.com

92

Table 36Total Debugging Tine to Locate and Correct an Error
TIMECOR (Maxinun Tine = 200 ninutes)

8ECT1 8ECT2 8ECT3 8ECT4 ALL I
Mean 106.3 104.3 117.5 101.8 107.5 I
Standard
Deviation

61.0 45.2 42.6 42.6 47.6 |

Minimum 25 38 23 49 2 5 1
Maximum 200 167 200 200 200 1

As shown in Table 35, the interactive debugging
treatment groups, SECT2 AND SECT4, had a total mean program
debugging test score (LOCCOR) of 94.8 and 93.1 respectively.
The traditional debugging groups, SECT1 and SECT3, had a
total mean program debugging test score (LOCCOR) of 78.8 and
75.3, respectively. Overall, the effect size between the
interactive and the traditional debugging total mean test
scores (LOCCOR) was .38 standard deviations. The effect size
was slightly larger for BASIC programming language groups,
SECT3 and SECT4, than the COBOL programming language groups,
SECT1 and SECT2.

As shown in Table 36, the differences found in the
total mean time to locate and correct a program logic error
(TIMECOR) was not as large as the differences found between
the total mean debugging test scores (LOCCOR). The
distribution of the total mean debugging times was bimodal

www.manaraa.com

93
and positively-skewed. This distribution was attributable to
the inherent nature of time-oriented data and the coding of
incorrect posttest program sections with a maximum time
value.

The interactive program debugging groups, SECT2 and
SECT4, had a total mean debugging time (TIMECOR) of 104.3
and 101.8 minutes respectively (see Table 36). The
traditional program debugging groups, SECT1 and SECT3, had a
total mean debugging time (TIMECOR) of 106.3 and 117.5,
respectively. Overall, the effect size between the
interactive and the traditional total mean debugging time
(TIMECOR) was approximately .23 standard deviations. The
effect size was larger for the BASIC programming treatment
groups, SECT3 and SECT4, than the COBOL programming
treatment groups, SECT1 and SECT2 (see Table 36).

Each program debugging posttest consisted of five
programs. The first program contained one simple logic
error, e.g., failure to execute a statement within a loop.
The second and third program contained a more difficult
logic error, e.g., incorrect sequence of statements. The
fourth and the fifth programs contained two logic errors
that interacted. Descriptive statistics for LOCCOR and
TIMECOR analyzed for each individual debugging test program
are presented in Tables 37 and 38.

www.manaraa.com

94

Table 37
Debugging Mean Test Score by Question end by Section

1 2 3 4 5 Total
max=8 max=24 max=24 max=40 max=40 max=136

8ECT1 6.40 18.00 14.40 20.00 20.00 74.8
SECT2 4.80 18.00 17.95 30.00 24.00 94.8
8ECT3 6.91 15.00 20.73 23.59 9.09 75.3
8ECT4 6.96 18.78 21.91 29.78 15.65 93.1
ALL 6.31 17.44 18.91 25.93 16.94 85.53

Table 38
Debugging Mean Test Time
in Minutes by Question

1 2 3 4 5 Total
max=40 max=40 max=40 max=40 max=40 max=200

8ECT1 15.75 16.60 21.50 24.60 27.90 106.35
8ECT2 22.85 18.15 16.40 20.10 25.35 104.30
SECT3 20.14 26.18 11.82 21.73 35.41 117.55
8ECT4 19.30 19.87 11.78 19.65 31.39 101.87
ALL 19.52 20.33 15.16 21.46 30.19 107.55

An item analysis of the debugging test is presented in
the Table 39. As expected, questions four and five
demonstrated the greatest ability to differentiate student's
program debugging skills.

www.manaraa.com

95

I Table 39
Item Analysis of Debugging Posttest Questions

00D
H

Xtos

2
max=24

3
max=24

4
max=40

5
max=40

Mean 6.31 17.44 18.91 25.93 16.94
Difficulty Index .788 .729 .788 .682 .424
Di scrimination
Index

.443 .612 .612 .927 .965

Point Biserial
Correlation

.464 .623 .634 .845 .751

The objective of this study was to investigate the
instructional effectiveness of two different instructional
methods used to teach students to correct logic errors
contained in a computer program. There are three
interrelated issues to be considered in the evaluation of
these program debugging tools: (a) the instructional
presentation qualities of the debugging tool, (b) the
adoption of the tool, and (c) the skills in using the
debugging tool.

The "instructional presentation qualities" of the
debugging tool includes those issues that enable a student
to better: (a) understand and recognize the types of program
logic errors and (b) detect the symptoms, i.e., program
output, and causes of program logic errors. "Presentation
qualities," as defined in this study, represent lower level
cognitive objectives, such as knowledge, comprehension and
interpretation.

www.manaraa.com

96
While a computer debugging tool may offer benefits

beyond understanding program logic errors better, students
may not actually use the debugging tool while programming.
The "adoption qualities" of computer debugging tools, as
defined in this study, include those issues relating to the
student's choice to use the tool. "Adoption qualities" are
more affective in nature than cognitive.

"Skills in using the tool," as defined in this study,
include various higher level cognitive objectives such as
application and analysis. The ability to use a particular
program debugging tool to solve a new and different
debugging problem may be the best measure of the practical
significance of the computer debugging tool.

While the dependent variables, LOCCOR and TIMECOR, may
provide some evidence to assess the effectiveness of the
debugging tool as a presentation tool, these dependent
variables do not necessarily provide sufficient evidence to
assess the "adoption and skill qualities" of the computer
debugging tool. Therefore, it is important to determine
whether the student actually did use the computer debugging
tool. In addition, the effectiveness of the program
debugging tool when it was applied to a new computer
debugging task needs to be addressed.

A self-reporting instrument was included with each
debugging test program. The student was asked to report on
each debugging tool used to debug a particular test program

www.manaraa.com

97
and to rate the value of the debugging tool used. The "Value
of Tool" rating scale ranged from: one (1) not used, two (2)
slight value, to five (5) very valuable. Values were always
reported, even if the student did not successfully locate
and correct the program logic error.

The following tables report various descriptive
statistics gathered from the debugging tool worksheet
prepared by students at the end of each program section of
the program debugging test. "Percent used" represented the
percentage of students who reported to have used a
particular tool during the posttest for a particular
program. "Mean Value" represented the statistical mean of
the "Value of Tool" rating scale. The correlation
coefficient measured the association between the reported
value of the tool used and the student's test score for that
particular program section. Correlation coefficients that
were not statistically significant (p>.05) were reported as
zero in the following tables. Tables 40 thru 43 presents
descriptive statistics for each instructional section
concerning the reported usage and the value of the computer
debugging tools used during the posttest.

www.manaraa.com

98

Table 40
Descriptive Statistics of Debugging Tool Used

by Question for SECT3
(BASIC Traditional Debugging)

1 2 3 4 5
Reviewed Prog. Code
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

100%
4.09
1.01
.30

100%
3.86
1.12
.83

100%
4.00
1.38
.49

100%
3.45
1.73
.47

100%
2.59
1.91
.46

Reviewed Outputs
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

87.4%
3.40
1.01
.00

73.7%
3.45
1.56
.00

73.7%
3.50
1.76
.00

68.2%
3.36
1.83
.45

46.5%
2.68
1.91
.00

Displays/Prints
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

4.5%
1.09
.426
.00

31.8%
1.72
1.27
.00

9.1%
1. 36
1.17
.00

13.5%
1.22
.869
.00

13.5%
1.40
1.09
.00

www.manaraa.com

99

I Table 41
Descriptive Statistics of Debugging Tool Used

by Question for 8ECT1
(COBOL Traditional Debugging)

1 2 3 4 5
Reviewed Prog, code
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

100%
4.20
0.95
.51

100%
4.15
1.03
.65

95%
4.10
1.25
.40

95%
4.00
1.25
.57

100%
3.00
1.86
.60

Reviewed Outputs
Percent Used
Mean Value
Standard Deviation

1 Correlation Coeff.

75%
3.35
1.59
.00

80%
3.55
1.57
.58

80%
3.75
1.65
.69

75%
3.50
1.76
.64

55%
2.85
1.89
.00

Display/Print
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

5%
1.10
0.44
.00

0%
1.00
0.00
.00

5%
1.20
.894
.00

0%
1.00
0.00
.00

0%
1.00
0.00
.00

www.manaraa.com

100

Table 42
Descriptive Statistics of Debugging Tool Used

by Question for SECT4
(BASIC Interactive Debugging)

1 2 3 4 5
Reviewed Prog. Code
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

100%
3.43
1.30
.00

91.6%
3.39
1.49
.42

100%
3.69
1.36
.00

95.7%
3.69
1.42
.00

78.3%
3.00
1.62
.44

Reviewed Outputs
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

82.6%
3.13
1.42
.49

82.6%
3.47
1.53
.00

82.6%
3.47
1.59
.41

78.3%
3.39
1.55
.53

65. 3%
2.86
1.65
.50

Displays/Prints
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

17.4%
1.34
.83
.00

13.0%
1.39
1.15
.00

13.0%
1.34
1.02
.00

8.6%
1.13
0.45
.00

17.4%
1.30
0.92
.00

Stepping
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

60.9%
2.73
1.68
.00

65.3%
2.73
1.54
.00

62.2%
2.78
1.67
.00

69.6%
2.95
1.58
.00

75. 3%
2.65
1.92
.00

Break Points
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

44.8%
1.60
.98
.00

39.2%
1.91
1.41
.00

26.1%
1.86
1.60
.00

21.8%
1.52
1.16
.00

26.1%
1.78
1.44
.00

Query Variables
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

34.8%
1.86
1.28
.00

56.6%
2.52
1.59
.00

44.5%
2.30
1.63
.00

61.2%
2.17
1.64
.00

39.2%
2.13
1.57
.00

www.manaraa.com

101

Table 43
Descriptive statistics of Debugging Tool used

by Question for 8ECT2 (COBOL Interactive Debugging)

1 2 3 4 5
Reviewed Prog. Code
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

100%
4.10
1.02
.39

100%
4.20
1.05
.42

100%
4.20
1.15
.61

90%
4.00
1.48
.71

100%
2.90
1.86
.85

Reviewed Outputs
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

80%
3.85
1.53
.00

75%
3.60
1.63
.00

70%
3.75
1.61
.63

75%
3.40
1.78
.00

55%
1.20
1.83
.77

Displays/Prints
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

5%
1.10
0.30
.00

5%
1.05
.22
.00

5%
1.30
.92
.00

5%
1.60
1.46
.00

5%
1.20
0.89
.00

Stepping
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

35%
2.20
1.54
.00

35%
2.15
1.66
.00

50%
2.10
1.29
.00

50%
2.60
1.72
.00

50%
2.75
2.02
.72

Break Points
Percent Used
Mean Value
Standard Deviation
Correlation Coeff.

20%
1.40
0.94
.00

20%
1.55
1.19
.00

20%
1.20
.52
.00

25%
1.65
1.30
.00

20%
1.65
1.46
.00

Query Variables
Percent Used
Mean Value
Standard Deviation

| Correlation Coeff.

20%
1.75
1.44
.00

25%
1.90
1.55
.00

10%
1.45
1.23
.00

30%
2.05
1.70
.00

30%
2.00
1.65
.50

www.manaraa.com

102

interpretations
As shown in Tables 40 thru 43, "Reviewing the Program's

Source Code" was reported as the most frequently used and
the most valuable computer debugging tool for all posttest
programs and experimental sections. "Reviewing the incorrect
printed outputs" was reported as the second most frequently
used and valuable computer debugging tool for all posttest
programs and experimental sections. The students who
participated in the traditional debugging sections rarely
used DISPLAY and the PRINT verbs to debug their test
programs.

Selection of Covariates
Two variables, programming experience (PROGEXP) and

prerequisite knowledge (PREREQ), were expected to covary
with each dependent variable (LOCCOR and TIMECOR) and, thus,
must be taken into account to minimize confounding the
results of the study. Programming experience represented
programming knowledge and abilities previously acquired in
other programming courses or by professional experience. In
addition, programming experience may have included other
programming languages other than those being studied.
PROGEXP was coded as the number of high school or college
computer programming language courses taken prior to the
study.

Prerequisite knowledge, on the other hand, related to

www.manaraa.com

103
the specific rules of syntax, program construction and
algorithmic development for the particular programming
language being studied. Prerequisite knowledge was measured
by the total percentage score of the program language
prerequisite tests.

The analysis of the covariates proceeded in two steps.
First, a Pearson correlation was performed on PROGEXP and
PREREQ to measure their relationship with each of two
dependent variables: LOCCOR and TIMECOR. The results of this
analysis are shown in Tables 44 and 45.

Table 44
Pearson correlation Analysis of the Variable

PROGEXP
(the number of previous programming courses)

Variable Pearson Correlation
Coefficient

LOCCOR 0.08
TIMECOR -0.17
PREREQ 0.21 *

* p<.05

Table 45
Pearson Correlation Analysis of the Variable I

PREREQ
(total percentage prerequisite test scores)

Variable Pearson Correlation
Coefficient

LOCCOR 0.43 *
TIMECOR -0.48 *
PROGEXP 0.21 *

p<. 05

www.manaraa.com

104
A Pearson Correlation Analysis also was preformed on

other demographic and descriptive data with the dependent
variables, LOCCOR and TIMECOR. No other significant
correlations were found between the demographic and
descriptive data and the dependent variables (p>.05).

Second, a pooled within-groups correlation was
performed on PROGEXP and PREREQ to measure their
relationship with each of two dependent variables: LOCCOR
and TIMECOR. The Pearson correlation measures the degree of
association between any two variables, e.g., PROGEXP and
PREREQ, using the data from all of the participants of the
study. On the other hand, the pooled within-groups
correlation measures the degree of association between any
two variables by summing and weighting (sum of the squares
of each variable) each Pearson correlation coefficient for
each individual group or cell, e.g., COBOL field dependent
individuals who used the interactive program debugger.

A pooled within-groups correlation coefficient of .30
or greater will generally reduce the error term of a given
factorial model to a degree that one can recommend the use
of the Analysis of Covariance model (ANCOVA), rather than
the Analysis of Variance model (ANOVA).

The pooled within-groups correlation coefficients found
between the variable PROGEXP and the dependent variables,
LOCCOR and TIMECOR, were .107 and -.201, respectively. The
pooled within-groups correlation coefficients found between

www.manaraa.com

105
the variable PREREQ and the dependent variables, LOCCOR and
TIMECOR, were .416 and -.432, respectively.

Based upon the results of the Pearson correlation
analysis and pooled within-groups correlation analysis, the
variable PREREQ was retained as a covariate and PROGEXP was
rejected. PREREQ was retained a covariate for two reasons:
(a) it was significantly correlated (p<.05) with LOCCOR or
TIMECOR and (b) both pooled within-groups correlation
coefficients measuring the association between the dependent
variables, LOCCOR and TIMECOR, and PREREQ exceeded .30.

Analysis of Covariance

The design of this study was a posttest-only,
completely between-subjects, fully-crossed factorial
involving three independent variables: (a) debugging
treatment, (b) programming language, and (c) field
dependence. A quasi-experimental strategy was used to study
the effects of these independent variables on two dependent
variables: (a) ability to locate and correct a program logic
error (LOCCOR) and (b) the amount of time to successfully
locate and correct a program logic error (TIMECOR).

The first dependent variable: ability to locate and
correct a program logic error (LOCCOR), was analyzed in a 2
X 2 X 3 SAS General Linear Procedure (GLM-type) ANCOVA. A
SAS GLM analysis-of-covariance, homogeneity-of-slopes model

www.manaraa.com

106
was conducted. The GLM procedure was used to take in account
the fact that the treatment groups were unbalanced (SAS/STAT
User's Guide, 1988). The group sizes of this study varied
from 20 to 23 participants.

The GLM procedure used the least-squares means (LSMs)
approach to handle unbalanced designs. "LSMs are simply
estimators of the class or subclass marginal means that
would be expected had the design been balanced" (SAS/STAT
User's Guide, 1988, p. 564).

The GLM-type ANCOVA model also adjusted for differences
found in the dependent variable (LOCCOR) due to the
covariate variable prerequisite programming knowledge
(PREREQ). The use of the covariate, PREREQ, reduced the
error term of the model from 2098.94 (ANOVA) to 1764.84.

Because of the difficulties in assessing the actual
assumption of equal-slopes, a SAS GLM analysis-of-
covariance, separate-slopes model was also conducted. The
results of this analysis were comparable to the reported
results of the homogeneity-of-slopes model.

The results of the GLM ANCOVA will assist in answering
Research Questions 1 and 2. The results of the ANOVA model
and the ANCOVA model are presented in Tables 46 thru 48.

www.manaraa.com

107

Table 46
General Linear Model Procedure

LOCCOR(ability to looate and oorreot logic errors)

Source of Variation DP Bu b of
Square

MeanSquare P Value Pr>P

Model 12 44116.4 3676.3 2.08 .0287*
Error 72 123068.7 1764.8
Corrected Total 84 171185.1
* p<.05

Table 47
General Linear Model Procedure (ANOVA)

LOCCOR(ability to looate and oorreot logic errors)

Source of Variation DP TYPE I 88 MeanSquare P Value Pr>F
LANGUAGE 1 121.9 121.9 0.07 0.793
TREATMENT 1 6093.6 6093.6 3.45 0.067
LANGUAGE*TREATMENT 1 16.5 16.5 0.01 0.923
GEFTCD 2 9163.5 4596.7 2.60 0.080
LANGUAGE*GEFTCD 2 1547.8 773.9 0.44 0.646
TREATMENT*GEFTCD 2 240.4 120.2 0.07 0.934
LANGUAGE *TREATMENT
*GEFTCD

2 748.2 374.1 0.21 0.809

PREREQ 1 26154.1 26154.1 14.82 0.003
* p<.05

www.manaraa.com

108

Table 48
General Linear Model Procedure (ANCOVA)

LOCCOR
(ability to locate and oorreot logic errors)

Source of Variation DF TYPE III 88 MeanSquare F Value Pr>F
LANGUAGE 1 85.0 85.0 0.05 0.826
TREATMENT 1 4022.3 4022.3 2.28 0.135
LANGUAGE *TREATMENT 1 335.1 355.1 0.19 0.664
GEFTCD 2 3683.6 1841.8 1.04 0.357
LANGUAGE*GEFTCD 2 504.4 252.2 0.14 0.867
TREATMENT*GEFTCD 2 654.9 327.4 0.17 0.831
LANGUAGE*TREATMENT
♦GEFTCD

2 388.7 194.3 0.11 0.895

PREREQ 1 26154.1 26154.1 14.82 0.003
*p<.05

Type I SS is sometimes referred to the sequential sums
of squares. Type I SS gives the between-group sum of the
squares and will add up to the total of the model sum of the
squares. Type III sum of the squares is sometimes referred
to as partial sums of squares. Type III SS represents the
Type I SS after adjusting for the covariate (PREREQ). Both
Type I SS and Type III represents total sum of the squares
across groups (SAS/STAT User's Guide, 1988).

Interpretations;
There were no statistically significant interactions

among the three independent variables: LANGUAGE, TREATMENT
and GEFTCD (field dependence) and the dependent variable

www.manaraa.com

109
LOCCOR (the ability to locate and correct a program logic
error). There were no statistically significant main effects
found for any of the independent variable: LANGUAGE,
TREATMENT and GEFTCD and the dependent variable LOCCOR.

The second dependent variable, time to locate and
correct a program logic error (TIMECOR), was analyzed in
separate 2 X 3 SAS General Linear Procedure (GIH-type)
ANCOVAs with each model conducted for each programming
language. The variable prerequisite programming knowledge
(PREREQ) was used as a covariate. Due to the nature of
program development process, interpretive versus compiled,
there was no reason to expect that a relationship existed
between the amount of time it takes to debug a BASIC program
will be different for a COBOL program.

Using the procedures previously used to analyze the
dependent variable LOCCOR, a SAS GLM analysis-of-covariance,
separate-slopes model was used to analyze the dependent
variable TIMECOR. A logarthimic transformation was performed
on the raw time data before the GLM ANCOVA was conducted.

As previously mentioned, the distribution of the total
mean debugging times was bimodal and positively-skewed due
to the inherent nature of time-oriented data and the coding
of incorrect program sections with a maximum time value.
"There are three major reasons for using transformations: 1)
To achieve homogeneity of error variance. 2) To achieve
normality of treatment-level distributions (or within-cell

www.manaraa.com

110
distributions). 3) To obtain additivity of treatment
effects" (Kirk, R., 1968, p.63).

While multiple methods for the transformation of raw
data exist, the logarthimic transformation method was
preferred since: 1) the dependent variable (TIMECOR) was a
measure of a reaction time and 2) and the raw data were
positively-skewed (Kirk, R., 1968, p. 65).

The results of these two GLM ANCOVAs will assist in
answering Research Question 3. The results of the GLM ANOVA
and ANCOVA for each respective language are presented in
Tables 49 thru 52.

Table 49
General Linear Model Procedure (ANOVA)

TIMECOR (BASIC)(time to locate and correct logic errors in a BASIC program)

Source of Variation DF TYPE I SS Mean
Square F Value Pr>F

TREATMENT 1 0.252820 0.252820 1.65 0.206
GEFTCD 2 0.510760 0.255380 1.67 0.202
TREATMENT*GEFTCD 2 0.044349 0.022174 0.14 0.865
PREREQ 1 0.768686 0.768686 5.01 0.031
* p<.05

www.manaraa.com

Ill

Table 50
General Linear Model Procedure (ANCOVA)TIMECOR (BASIC)

(time to locate and correct logic errors in a BASIC program)

Source of Variation DF TYPE III 88 Mean
Square F value Pr>F

TREATMENT 1 0.307438 0.307438 2.01 0.164
GEFTCD 2 0.136013 0.068006 0.44 0.645
TREATMENT*GEFTCD 2 0.006893 0.003446 0.02 0.977
PREREQ 1 0.768686 0.768686 5.01 0.031
* p<.05

0 General Linear Model Procedure (ANOVA)TIMECOR (COBOL)(time to locate and correct logic errors in a COBOL program)

Source of Variation DF TYPE I SS Mean
Square F Value Pr>F

TREATMENT 1 0.033566 0.033566 0.13 0.716
GEFTCD 2 1.115916 0.557958 2.23 0.123
TREATMENT*GEFTCD 2 0.440642 0.220032 0.88 0.424
PREREQ 1 3.704485 3.704485 14.83 0.000
* p<.05

Table 52
General Linear Model Procedure (ANCOVA)TIMECOR (COBOL)

(time to locate and correct logic errors in a COBOL program)

Source of Variation DF TYPE III
SS MeanSquare F Value Pr>F

TREATMENT 1 0.286707 0.286707 1.15 0.291
GEFTCD 2 0.384108 0.192054 0.77 0.471
TREATMENT*GEFTCD 2 0.190779 0.095389 0.38 0.685
PREREQ 1 3.704482 3.704482 14.83 0.000
* p<.05

www.manaraa.com

112
Interpretations;
There was no statistically significant interaction of

TREATMENT and GEFTCD (field dependence) on the dependent
variable TIMECOR (the ability to locate and correct a
program logic error) in either programming language
(LANGUAGE). There were no significant main effect found for
either independent variable, TREATMENT and GEFTCD, on the
dependent variable TIMECOR.

After adjusting for the differences found in the
programming prerequisite tests, there were no statistically
significant differences found in the ability or time to
locate a program logic error between the traditional and the
interactive debugging groups. In addition, there were no
statistically significant interactions found between the
debugging treatment, field dependence and programming
language.

Secondary analysis

Each debugging posttest consisted of five different
programs, each having a different debugging task. The
complexity of the debugging task was designed to increase
from program one to program five. Each of the five
individual program test scores were analyzed in a 2 X 2 X 3
SAS General Linear Procedure (GIH-type) ANCOVA, homogeneity-
of-slopes model. It was of interest to determine if a

www.manaraa.com

113
particular type of programming debugging task was affected
by the model.

Table 34 presents the results of a 2 x 2 x 3 ANCOVA,
which analyzes the fourth program's test score based upon
TREATMENT, LANGUAGE, and field dependence (GEFTCD) while
adjusting for programming prerequisite skills.

Table 53
General Linear Model Procedure (ANCOVA)

Program 4 Test Score

Source of Variation DF TYPE III SS Mean
Square F Value pr>F

LANGUAGE 1 17.8 17.8 0.06 0.811
TREATMENT 1 1238.8 1238.8 3.98 0.049*
LANGUAGE*TREATMENT 1 46.7 46.7 0.15 0.699
GEFTCD 2 228.5 114.28 0.37 0.694
LANGUAGE*GEFTCD 2 425. 5 212.7 0.68 0.508
TREATMENT*GEFTCD 2 108.3 54.9 0.17 0.840
LANGUAGE * TREATMENT
♦GEFTCD

2 983. 6 491.8 1.58 0.213

PREREQ 1 3360.3 3360.3 10.78 0.001
*p<.05

Interpretations:
A statistically significant TREATMENT effect was found

(p<.05) for the fourth program's test score. There were no
other significant effects.

www.manaraa.com

SUMMARY AMD CONCLUSIONS

summary
The purpose of this study was to evaluate the effects

of computer program debugging tools, computer program
languages, and field dependence on the ability of a student
programmer to locate and correct logic errors in a computer
program. Two intact groups of COBOL programming students and
two intact groups of BASIC programming students participated
in this study. One group was randomly assigned to the
interactive debugging treatment and the other group was
assigned to the traditional debugging treatment in each
respective programming language.

Developing a computer program and debugging computer
program errors are demanding problem solving tasks
(Shneiderman, 1980) . Locating and correcting a logic error
in a computer program is probably the most difficult and
time-consuming task in the program development process.
Meyers (1979) reported that the process of locating and
correcting a logic error in a computer program represented
95 percent of the total program development process time.
Coupled with the annoying difficulties of admitting that one
made a mistake, the frustrations of the program debugging

114

www.manaraa.com

115
process may cause some students to become alienated from
computer technology.

Debugging logic errors in a computer program involves a
high-level heuristic that requires students to recognize the
logic error, analyze the cause of the logic error, and to
apply various syntactical and algorithmic skills to create a
solution for the discovered error. This process requires
significant cognitive resources. The use of the interactive
computer program debugger was expected to: (a) relieve the
constraints on short term memory, (b) permit students to
view the execution steps of the program as written in the
student's native program code, (c) provide various
organizational cues that would enable students to structure
the debugging process, and (d) provide an interactive
control environment that would enable students to test
various debugging strategies.

The interactive program debugger was expected to help
field dependent students more than field independent
students. Locating and correcting program logic errors
requires the individual to take a critical program element
out of the context of the program and to select the correct
problem solving strategy to formulate a solution for the
logic error. This process also requires students to
understand the logic error in relation to the context of the
program.

www.manaraa.com

116
The trend of non-computer science majors attending

computer programming classes and the diversity of cognitive
styles has presented new challenges to computer programming
curricula. The interactive computer program debugger may
assist computer science educators in meeting those
challenges.

Discussion of the Findings
The findings of this study can be subdivided into two

sections: primary and secondary. The primary findings of
this study included the results of three ANCOVA analyses
that provided evidence to answer the three research
questions. The secondary findings included various
descriptive statistics, correlation analysis and other tests
that may serve to clarify the purpose of the study or to
serve as a basis for future research.

The results of the 2 x 2 x 3 ANCOVA (Table 48)
indicated no significant effects after adjusting for
differences found in prerequisite programming skills
(PREREQ). These statistical findings provided important
information that aided in answering Research Questions 1
and 2.

www.manaraa.com

117
The evidence provided by this 2 x 2 x 3 Analysis of
Covariance served as a basis for the following findings:

1. There was no statistically significant interaction
found among the program debugging treatment,
programming language, and field dependence.

2. There was no statistically significant interaction
found between the program debugging treatment and
programming language.

3. There was no statistically significant interaction
found between the program debugging treatment and
field dependence.

4. There was no significant interaction found between
field dependence and programming language.

5. There was no statistically significant main effect
found between the BASIC and COBOL programming
languages in the ability to locate and correct a
program logic error (LOCCOR).

6. There was no statistically significant main effect
found among the field independent, field
dependent, and indeterminate students in the
ability to locate and correct a program logic
error (LOCCOR).

7. There was no statistically significant main effect
found between the traditional and interactive
debugging treatment groups in the ability to
locate and correct a program logic error (LOCCOR).

www.manaraa.com

118
The statistical findings of two 2 x 3 ANCOVAs (see

Tables 50 and 52) indicated that there are no significant
differences in the time to locate and correct a logic error
(TIMECOR) were found for any main effects or interaction
when adjusted for differences found in prerequisite
programming skills (PREREQ). These statistical findings
provides important information that aided in answering
Research Questions 2 and 3. The evidence provided by these 2
x 3 Analyses of Covariance served as a basis for the
following findings:

1. There was no significant interaction found between
the program debugging treatment and field
dependence for either programming language.

2. There was no significant main effect found among
field independent, field dependent, and
indeterminate students and the time required to
locate and correct a logic error in a computer
program (TIMECOR) for either programming language.

3. There was no significant main effect found between
the traditional and interactive debugging groups
in the time required to locate and correct a logic
error in a computer program (TIMECOR) for either
programming language.

www.manaraa.com

119
The lack of any significant main effects found between

field dependence and the ability (LOCCOR) and time (TIMECOR)
to locate and correct a program logic error did not concur
with the results of previous research. As shown in Tables 47
thru 52, field independent students did not perform
significantly better on the debugging posttest than field
independent students.

Cavaiani (1989) investigated the influence of field
dependence on the ability of a student programmer to locate
and correct logic errors in a COBOL program. In the Cavaiani
study, field dependent individuals did have significantly
more difficulty in locating and correcting program logic
errors. This study does not support Cavaiani's research.

However, since the lack of concurring results were
found for both the interactive and traditional debugging
treatments, these divergent findings cannot be fully
explained by the use of the interactive program debugger.
Other intervening variables may have contributed to these
results, including the following: (a) the use of
microcomputers in this study was different than the
mainframe computers used in Cavaiani's study, (b) the
program debugging tasks and the posttest administration
conditions were different than Cavaiani's study, e.g., pen-
and-pencil tests versus computer-based testing, and (c) the
amount of instructional time and reinforcement practice
devoted to program debugging strategies were different than

www.manaraa.com

120
Cavaiani’s study.

Cavaiani (1989) also studied the influence of different
scoring schemes on the measurement of student's debugging
skills. Though this study did use one of Cavaiani's scoring
schemes in the debugging posttest, the interaction of the
debugging tasks used on the posttest and the scoring scheme
may also have contributed to the conflicting results.

Additional analyses of the data produced several other
findings. These secondary findings include: (a) the
importance of mastering program prerequisite skills in
developing program debugging skills, (b) the practical size
of the treatment effect of the interactive program
debuggers, c) approximately 25% of the students
participating in the interactive debugging treatment failed
to use interactive debugging tools during the posttest, and
d) a significant treatment effect was found when the
posttest programs were analyzed individually.

First, as shown in Table 45, a significant correlation
(r=.44, p=.0001) was found between the student's ability to
locate and correct a program logic error (LOCCOR) and
student's prerequisite test scores (PREREQ). In other words,
mastery of programming prerequisite skills was significantly
related to improved performance on the debugging posttest.

Second, while no significant statistical effects were
found in this study, the absolute size of the observed
effect between the interactive and traditional program

www.manaraa.com

121
debugging treatments merits further discussion. As shown in
Table 35, the interactive debugging mean test scores
exceeded the traditional debugging total mean test scores
(LOCCOR) by .38 standard deviations. The observed effect
size was slightly larger for BASIC programming language
groups than the COBOL programming language groups.
Translated into percentage points, the effect was
approximately 12.8%, or more than one letter grade
difference.

Locating and correcting logic errors is perhaps the
most demanding and frustrating task for a student
programmer. Any improvement in this instructional area that
provides an increase in student performance by more than one
letter grade deserves serious consideration as a
instructional tool in the computer programming curriculum.
Yet, the nonsignificant results indicate that the .38
standard deviations is attributable to sampling error.

Third, approximately 25% of the students who had
participated in the interactive debugging sections reported
no use of any interactive debugging tool during the
debugging posttest (see Tables 41 and 43). The students who
participated in the interactive debugging sections could
have chosen from one of three interactive debugging tools.
"Stepping" is a tool that permits the student to view the
text of their native program code as their program executes.
This was the most frequently used interactive debugging

www.manaraa.com

122
tool. "Querying Variables," which permitted students to
inspect the contents of variables during program execution,
was the second most frequently used interactive debugging
tool. Setting "Break Points," which permitted students to
toggle between normal and interactive debugging execution
modes, was rarely used by interactive debugging student
programmers during the posttest.

Students who did use the interactive debugging tools
reported that their perceived value of the tools increased
as the posttest programs became more challenging, i.e.,
programs four and five (see Tables 41 and 43). This trend
was especially significant for SECT4, the COBOL interactive
debugging section. A significant correlation for SECT4 was
found between the student's reported value of the
interactive debugging tool and the test score for programs
four and five.

These reported results seem to indicate that students
who participated in the interactive debugging sections were
more likely to use the interactive debugging tools as the
debugging task became more challenging. While the validity
and the interpretation of this self-reported data can be
questioned, the pattern of usage was confirmed by the
observations of the test administrators.

Fourth, while there was no statistically significant
main effects or interactions found when the total posttest
debugging score (LOCCOR) was used as the dependent variable,

www.manaraa.com

123
a significant TREATMENT effect was found for the fourth
program's test scores (see Table 53). Each debugging
posttest consisted of five programs with each having a
different debugging task. The complexity of the debugging
task was designed to increase with each program, from
program one to program five.

Data from Table 39 provides evidence that programs four
and five had the largest discrimination indexes (.92 and
.96) and the largest point biserial correlation coefficients
(.84 and .75). This evidence suggests that value of the
interactive debugger may be more applicable to correcting
logic errors in advanced level algorithms found in more
advanced level programming courses than those typically
found in entry level programming courses.

Conclusions
Based upon the analysis of data and previous discussion

of the findings, the following conclusions can be made:

1) The use of either the interactive program
debugging tool or the traditional program
debugging tool does not effect an entry-level
programmer's ability to locate and correct a
program logic error.

www.manaraa.com

124

2) The use of either the interactive program
debugging tool or the traditional program
debugging tool does not effect an entry-level
programmer's time to locate and correct a program
logic error. If the instructional resources for
interactive debugging are not available or
instructional time is limited, instructional use
of traditional program debugging tools is
adequate.

3) The use of either the BASIC or the COBOL
programming language does not effect an entry-
level programmer's ability to locate and correct a
program logic error.

4) The use of either the BASIC or the COBOL
programming language does not effect an entry-
level programmer's time to locate and correct a
program logic error. BASIC was designed to be an
easy-to-learn programming language for student
programmers. COBOL, in spite of its wide use in
business, has been considered a verbose
programming language that is difficult for
students to learn. Considering the relative
performance of the programming debugging posttest

www.manaraa.com

125
and the three prerequisite tests, there is no
evidence to support the assumption that COBOL is a
more difficult to learn educational programming
language. The choice of a programming language in
the curriculum should consider other factors,
e.g., availability, cost, use, and the importance
of providing career opportunities.

5) Field dependence does not effect an entry-level
programmer's ability to locate and correct a
program logic error.

6) Field dependence does not effect an entry-level
programmer's time to locate and correct a program
logic error. It was expected that field dependent
students would have difficulty in understanding
the logic error in relation to the context of the
program. This result was not found. Perhaps
altering the instructional presentation or content
may provide opportunities for field dependent
programmers to learn to correct program logic
errors.

www.manaraa.com

126
7) Field dependence does not interact with the

programming language or program debugging tool in
an entry-level programmer's ability to locate and
correct a program logic error.

8) Field dependence does not interact with the choice
of programming language or program debugging
method in an entry-level programmer's time to
locate and correct a program logic error.

9) Programming language does not interact with the
choice of program debugging tool in an entry-level
programmer's ability and time to locate and
correct a program logic error.

10) Mastering computer programming prerequisite skills
is significantly related to an entry-level
programmer's ability and time to locate and
correct a program logic error. This study has
provided evidence that reinforces the conventional
wisdom of some educators, that technology is not a
substitute for learning fundamentals. Again, the
theory of Bloom's taxomony has been reaffirmed:
without acquiring prerequisite knowledge and
skills a student cannot apply those skills.

www.manaraa.com

127
11) Students tend to rely on traditional program

debugging methods and will only use the
interactive debugging tools when they perceive the
debugging task to be challenging or unfamiliar.

12) When using the interactive debugging method,
students tend to rely on the "Stepping" tool and
fail to take advantage of more advance interactive
debugging options, e.g., "Setting Break Points" or
"Watching Variables."

13) Full benefit of the interactive debugger may be
realised when applied to advanced level
programming curriculum and unfamiliar algorithmic
tasks, rather than those encountered by entry-
level college programming students.

14) No demographic or background variables were
significantly related to an entry-level student
programmer's ability and time to locate and
correct an program logic error. Experience in
computer programming, wordprocessing, or the
ability to prepare spreadsheets was not
significantly related to program debugging
abilities. In addition, the availability of a home
computer or the use of a computer at work was not

www.manaraa.com

128
significantly related to program debugging
abilities. While owning a home computer may offer
students convenience, it has no relationship to
the development of students' program debugging
abilities.

Further Research Recommendations

This study has only "opened the door" for investigating
the process of student learning with respect to debugging
logic errors in a computer program. While studies by
Pressman (1987) and Shneiderman (1980) have documented the
frustrations of the program debugging process, this study
was an attempt to identify instructional methods to improve
the process.

Before detailed recommendations for further study can
be discussed, the importance of the size of the large error
term as shown in Table 46 needs to be addressed. The error
term represents the sources of variation that are not
attributable to the effects of the independent variables and
covariate. The use of intact groups does not allow the
researcher the ability to control or manipulate all relevant
variables, which increases the chance that confounding
variables may be contributing to the error term.

The findings of this study suggest that the effect size
of the interactive computer debugger group was large enough

www.manaraa.com

129
to be of practical instructional value, yet no significant
statistical differences were found. The size of the sample
and the size of the effect were sufficient to provide
reasonable statistical power. However, the size of the error
term relative to practical significance of the effect
requires further explanation.

The results of this study indicate several specific
needs for future research. These include:

1) In order to more precisely define the results of
this study, the use of the program debugging tool
during the program debugging posttest needs to be
better controlled.

2) The relationship between the program debugging
task and the debugging tool needs to be studied
further. In addition, the similarity of the
debugging tasks of the posttest and the
instructional content of the course requires
further study.

The program debugging test should be modified
to include more advanced debugging tasks or those
unfamiliar to the student. A significant effect
for the interactive program debugger was found for

www.manaraa.com

the fourth program of the program debugging
posttest. Program four contained a challenging and
unfamiliar program debugging task. This evidence
suggests that either the debugging posttest
instrument used in this study might not have been
sufficiently difficult to measure the effects of
the interactive program debugger or that the
effectiveness of the interactive program debugger
may be only found in either advanced computer
science curricula or the professional programming
environment.

The instructional presentation of program
debugging skills within the sequence of the
computer programming curricula needs to be studied
further.

There is considerable debate among computer
programming educators concerning the appropriate
scheduling of program debugging skills within the
sequence of computer programming curricula. It has
been argued by some computer science faculty
members that scheduling the presentation of
program debugging skills early in the semester,
while students were simultaneously mastering
prerequisite programming skills, may overwhelm

www.manaraa.com

131
them. In consideration of these concerns, the
program debugging treatment of this study was
scheduled later in the semester.

Presenting a new program debugging strategy at
the end of an instructional period may not
overcome poor program debugging habits learned by
students earlier in the semester. Tables 42 and 43
presented evidence that many students in the
interactive debugging treatment groups did not use
the interactive program debugger tools during the
posttest, but rather relied on other program
debugging strategies, i.e., reviewing program
source code and outputs. Since these more
traditional debugging methods were learned earlier
in the semester, these previously learned
debugging habits may have been too difficult to
alter.

Because 25% of the students never used any
interactive debugging tools during the posttest
(see Tables 42 and 43), it is difficult to measure
the effectiveness of the interactive debugging
tool. The lack of use of the interactive program
debugger may provide a partial explanation for
large size of the error term found in the ANCOVA
analysis. If all students in the interactive group
had used the interactive debugging tools during

www.manaraa.com

the posttest, the study may have found a
significant advantage for the interactive
debugging treatment. There is a need to
investigate the appropriate scheduling of program
debugging skills within the sequence of computer
programming curricula. In addition, there is also
a need to study student attitudes toward the
various program debugging strategies.

It is recommended that further research should be
conducted to determine the reasons for the lack of
student's use of the interactive program debugger.

The lack of use of the interactive program
debugger during the debugging posttest may
indicate an inadequacy of the interactive
debugging tool itself. For example, the
interactive debugging tools may have been too
difficult or students may have perceived the power
of the debugging tool as too limited for the
debugging tasks presented.

The MicroFocus COBOL interactive debugger was
more easier to use and more powerful than the
Microsoft QuickBASIC interactive debugger (see
Tables 1 thru 4). However, both interactive
program debuggers had some disadvantages when

www.manaraa.com

133
compared to the process of reviewing printed
program code. Printed program code typically
displayed more lines of the program source code as
compared to the interactive program debugger's
display on the computer screen (sixty lines as
compared to twenty lines). In addition, students
could write debugging strategies directly on their
paper documentation, but were restricted from
writing notes on the computer screen.

5) Future research should address the reasons why
field dependent individuals did not perform
significantly different than field independent
individuals in debugging program logic errors as
found in previous research.

The relationship between the field dependence
and the sequence of presentation, the amount of
instructional time, and the type of instructional
materials used in this study should be researched
further.

6) Additional study is recommended to investigate the
relationship between the cognitive style field
dependence and the complexity and similarity of
the debugging task.

www.manaraa.com

134
7) Further research into program debugging skills and

tools and their relation to different populations,
e.g., computer science majors and adult learners,
and other programming languages is recommended.

The participants of this study were
predominately noncomputer science majors. This
study should be repeated for computer science
majors enrolled in advanced level computer
programming courses. Furthermore, research into
the program debugging skills and tools used by
professional programmers may decrease the program
development time and provide cost savings for
business, industry and government.

9) The relationship betwaen unstructured, structured
and object-oriented program development paradigms
and program debugging skills and tools need to be
studied further.

In addition to the previous recommendations, it is
recommended that further research be conducted in order to
more fully understand the cognitive processes of debugging a
computer program and their relationship between program
debugging tools, cognitive style, programming languages, and
other academic disciplines. The following recommendations

www.manaraa.com

135
for further research into other aspects of program debugging
are made:

1) Future research is needed to more fully understand
the cognitive processes used in program debugging
and their relationship to program debugging tools.

For example, research into the cognitive
processes that enable programmers to perceive the
location or cause of logic error is needed. The
role of color, graphical representations, e.g.,
structured chart animation, type font and other
cues in program debugging should be considered in
future research.

Future research is needed concerning the
cognitive processes used by computer programmers.
In addition, and debugging tools that serve to
organize and supplement constrained short term
memory resources should be studied. For example,
structured and object-oriented programming
strategies may improve program debugging skills
through the application of various "chunking"
strategies. Another important need for future
research involves the investigation of the
cognitive strategies used to encode, store,
organize and retrieve debugging knowledge and

www.manaraa.com

skills stored in long term memory.
Djikstra et al. (1989) has suggested that the

automation of computer science curriculum may
create a situation where students may no longer
have any concrete understanding of the actual
processes of writing programs. One may argue that
the automation of the debugging process may not
effectively engage the programmer in the problem
solving process and may actually inhibit long term
storage of acquired knowledge. This argument may
have some merit.

Craik and Lockhart (1972) suggested that the
greater the level and depth of processing, the
greater the possibility that information will be
encoded and stored in long term memory. If
automation of the program debugging process fails
to engage the student in elaborative processes,
then the interactive program debugger may not
contribute to a significant meaningful, learning
experience.

Additional research into the relationship between
problem solving strategies, e.g. backtracking,
top-down, representative, divide and conquer, and
programming debugging skills and tools is needed.

www.manaraa.com

The ability to transfer interactive program
debugging skills to other computer program
debugging environments needs to be studied.

Swaine (1990) was concerned whether debugging
tools would be abused by poor programmers. One
must consider the possibility that problem solving
skills developed through student use of
interactive program debuggers may not transfer to
other programming situations in which the
interactive program debugger is not used.

The arguments against interactive program
debuggers are similar to the ones proposed
regarding the use of calculators in schools.
Opponents argued that calculator usage should not
become a substitute for fundamental computational
skills. Similarly, one must consider whether the
specific programming debugging skills developed
through the use of the interactive program
debugger tool will laterally transfer to other
program debugging skills.

The ability to transfer interactive program
debugging skills to other disciplines needs to be
studied.

www.manaraa.com

Some educators have viewed computer programming
as a tool to help students develop problem solving
skills (Martin & Hearne, 1990; McCoy & Dodl, 1989)
that may provide benefits to other disciplines.
Research is needed to determine if problem solving
skills developed in computer programming curricula
will transfer to other disciplines. The role of
alternative debugging tools and their relationship
to developing problem solving abilities in other
disciplines may also need to be addressed.

Research could be conducted to determine the
relationship between program debugging skills and
tools and other cognitive style constructs.

For example, the concept of "leveling"
represents the internal cognitive processes of
individuals who merge perceived objects or events
with similar but not identical objects and events
recalled from memory. On the other hand, the
concept of "sharpening" represents the internal
cognitive processes of individuals who are less
likely to confuse similar objects and would be
more likely to magnify small differences between
similar information stored in memory. "Levelers"
may be expected to experience some difficulties in

www.manaraa.com

139
learning program debugging skills; however, once
learned, they may be able to apply these skills to
dissimilar and more challenging debugging tasks.

The cognitive processing continuum of
"reflectivity" versus "implusivity" also may be an
important cognitive style to consider in
relationship to the interactive programmer
debugger. The use of the interactive program
debugger may benefit "impulsive" individuals by
increasing the accuracy of their program debugging
skills. On the other hand, the use of the
interactive program debugger may benefit
"reflective" individuals by decreasing the amount
of time to debug a program.

Other cognitive style constructs that should be
considered in future research include: converging
versus diverging, scanning, conceptual
integration, and conceptual discrimination.

www.manaraa.com

BIBLIOGRAPHY

www.manaraa.com

141

BIBLIOGRAPHY

Anderson, J.R. (1985). Cognitive psychology and its
implications (2nd ed.). New York, NY: Freeman.

Arnone, M. P., & Grabowski, B.L. (1991). Effects of
variations in learner control on children's
curiosity and learning from interactive video. In
M.R. Simonson & C. Hargrave (Eds.), 13th
Proceedings of Selected Research Presentations of
the Association for Education Communications and
Technology. Ames, Iowa: Iowa State University.
45-67.

Bell, D., Morrey & Pugh, J. (1987) Software engineering
a programming approach. Englewood Cliffs, NJ:
Prentice-Hall.

Benander, A. C. & Benander, B. A.(Summer, 1991). An
analysis of debugging techniques. Journal of
Research on Computing and Education. 32(2), 447-455.

www.manaraa.com

142
Bower, G. H. (1972). Mental imagery and associative

learning. In L.W. Gregg (Ed.), Cognition in learning
and memory. New York: Wiley.

Carrier, C. A., & Jonassen, D. A. (1988). Adapting
courseware to accommodate individual differences. In
D. A. Jonassen (Ed.), Instructional Designs for
Microcomputer Software. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Carver, Doris L. (1989). Programmer variations in
software debugging. Communications of the ACM.
11(12), 1100-1112.

Cavaiani, Thomas P. (Summer, 1989). Cognitive style
and diagnostic skills of student programmers.
Journal on Research on Computing in Education.
37(2), 411-421.

Cleborne, D. M. (1989, July). The harmful effects of
excessive optimism in educational computing.
Educational Technology. 23-29.

Clements, D.H. & Gullo, D.F. (1985). Effects of
computer programming on young children's cognition.
Journal of Educational Psychology. 26(6), 1051-1058.

www.manaraa.com

143
Cohen, J. (1969). Statistical analysis for the

behavioral sciences. New York: Academic Press.
Cohen, R. (1969, October). Conceptual styles, cultural

conflict and nonverbal tests of intelligence.
American Anthropologist. 828-859.

Conrad, R. (1971). The chronology of the development
of covert speech in children. British Journal of
Psychology. 5, 398-405.

Conrad, R. (1972). Short term memory in deaf: A test
for speech encoding. British Journal of Psychology.
55, 429-432.

Craik, F.I.M. & Lockart, R.S. (1974). Levels of
processing: A framework for memory research. Journal
of Verbal Learning and Verbal Behavior. 11, 671-684.

Cromier, S. M. & Hagman J.D. (1987). Introduction,
In S.M. Cromier & J.D. Hagman (Eds.), Transfer of
Learning: Contemporary Research and Applications.
San Diego, CA: Academic Press.

Cronbach, L.J., & Snow, R.E. Aptitudes and
instructional methods. New York: Irvington Press,
1977.

www.manaraa.com

144
Davis, W. A. (1983). Operating systems: A systematic

view. Menlo Park, CA: Addison-Wesley Publishing
Company.

Dijkstra, P. J. et al., (1989). A debate on teaching
computer science, Communications of the ACM.
32(12), 1397-1416.

French, M. (1983). A supplantation approach to the
design of instructional visuals. Paper presented at
the National Convention of the Associaiton of
Communications and Technology, New Orleans, LO,
January, 1983.

Gick, M.L. & Holyoak, K.J. (1987). The cognitive
basis of knowledge transfer, In S.M. Cromier
& J.D. Hagman (Eds.), Transfer of learning:
Contemporary research and applications.
San Diego, CA: Academic Press.

Gilbert, P. (1983). Software design and development.
Chicago, IL: Science Research Associates.

Goetzfried, L. & Hannafin, M.J. (1985). The effects
of the locus of CAI control strategies on the
learning of mathematics rules. American Education
Research Journal. 22(2), 273-278.

www.manaraa.com

145
Gray, W. D. & Orasanu, J. M. (1987). The transfer

of learning, In S.M. Cromier & J.D. Hagman (Eds.)
Transfer of Learning: Contemporary Research and
AppIications. San Diego, CA: Academic Press.

Hannafin, M. J. (1984) . Guidelines for using locus of
instructional control in the design of computer
assisted instruction. Journal of Instructional
Development. 7(3), 6-10.

Hicks, C. (1973). Fundamental concepts in the design of
experiments (2nd ed.). New York: Holt, Reinhart and
Winston.

Isaac, S. & Michael, W. (1981). Handbook in research
and evaluation (2nd ed.). San Deigo, CA: EdITS
Publishers.

Jesky, R. & Berry, L. (1991). The effects of pictorial
complexity and cognitve style on visual recall
memory. In M.R. Simonson & C. Hargrave (Eds.), 13th
Proceedings of Selected Research Presentations of
the Association for Education Communications and
Technology. Ames, Iowa: Iowa State University. 290-
296.

www.manaraa.com

146
Jonassen, D. A. & Tennysen, R. D. (1983). Effect of

adaptive advisement of perception in
learner-controlled, computer-based instruction,
using a rule-learning task. Education and
Communication Technology Journal. 21(4), 226-236.

Jonassen, D. A. (1988). Learning strategies in
courseware. In D.A. Jonassen, (Ed.), Instructional
Designs for Microcomputer Software. Hillsdale, NJ:
Lawerence Erlbaum Associates.

Kirk, R. A. (1968). Experimental design: Procedures
for the behavioral sciences. Belmont, CA:
Brooks/Cole Publishing Company.

Koohang, Alex, (1989). A study of attitudes toward
computers: Anxiety, confidence, liking, and the
perception of usefulness. Journal of Research on
Computing and Education. 27(4), 137-150.

Krendle, K. A., & Liberman, B. A. (1988). Computers and
learning: A review of recent research. Journal of
Educational Computing Research. 4(4), 367-389.

Kulhavy, R.W. & Swenson, I. (1975). Imagery
instructions for the comprehension of text. British
Journal of Educational Psychology. 42(2), 47-51.

www.manaraa.com

147
Kulhavy, R. W. Schwartz, N.H. & Shaha, S.H. (1983).

Spatial representations of maps. American Journal of
Psychology. M, 337-351.

Kutscher,R. (1990). Outlook 2000: The maior trends.
(Occupational Outlook Quarterly), Washington, DC:
Department of Labor, 2-7.

Laverty, J. (1990). [Survey of instructional startegies
in higher education computer courses]. Unpublished
raw data.

Lee, M. J. (1991). Metacogntive and cognitive effects
of different loci of instructional control. In M.R.
Simonson & C. Hargrave (Eds.), 13th Proceedings of
Selected Research Presentationsof the Association
for Education Communications and Technology. Ames,
Iowa: Iowa State University. 433-459.

Lepper, M.R. (1985) . Micro computers in education:
Motivational and social issues. American
Psychologist. 40(1), 1-18.

Levin, J.R. (Summer, 1975). Determining sample size
for planned and post hoc analysis of variance
comparisons. Journal of Educational Measurement.
12(2), 99-108.

www.manaraa.com

148
Linn, M.C. (1985). The cognitive consequences of

programming instruction in the classroom.
Educational Researcher. 14(5), 14-29.

Linn, M.C. & Kyllonen, P. (1981). The field
dependence-independence construct: some, one,
or none. Journal of Educaitonal Psychology. H,
261-273.

Maddux, C. (Febuary, 1989). Logo: Scientific dedication
or religious fanaticisim in the 1990's?, Educational
Technology. 22-26.

Maddux, C. (July, 1989). The harmful effects of
excessive optimism in educational computing.
Educational Technology. 23-29.

Maier, N.R.F. & Jansen, J.C. (1969). Are good problem
solvers also creative? Psychological Reports. 24,
139-146.

Mattoon, J. & Klein, J. & Thurman, R. (1991). Learner
control versus computer control in instruction
simulation. In M.R. Simonson & C. Hargrave (Eds.),
13th Proceedings of Selected Research Presentations
of the Association for Education Communications and
Technology. Ames, Iowa: Iowa State University, 481-
497.

www.manaraa.com

149
Maxwell, S. E., & Delaney, H.D. (1990). Designing and

analyzing data: A model comparison prespective.
Belmont, CA: Wadsworth.

McCoy, L.P. & Dodl, N.R. Dodl. (1989). Computer
programming experience and mathematical problem
solving. Journal of Research on Computing and
Education. 12(3), 14-25.

Meyer, G. (1979). The art of software testing. New
York: Wiley.

Miller, G.A. (1956). The magical number seven, plus or
minus two. Psychological Review. 63, 81-97.

Newell, A. & Simon, H. (1972). Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

Nickerson, R.S. (1982). Computer programming as a
vehicle for teaching skills. Thinking; The Journal
of Philosophy for Children. 4, 42-48.

Nickerson, Robert C. (1986). Fundamentals of
Structured Programming (2nd ed.). Glenville, IL:
Scott, Foresman and Company.

Obrien, J. (1985). Computers in Business Management.
Homewood IL: Richard D. Irwin, Inc.

www.manaraa.com

150
Ormrod, J.E. (1990). Human Learning: Theories.

Principles, and Educational Applications. Columbus,
OH: Merril.

Osgood, C. E. (1949). The similarity paradox in
human learning: A resolution. Psychological Review.
56, 132-143.

Occupational Outlook Handbook (1988). U.S. Department
of Labor, Bureau of Statistics, 66-67, 203-234.

Pappert, S. (1980). Mindstorms: Computers, childern
and powerful ideas. New York: Basic Books.

Pascaul-Leone, J., Ammon, P., Goodman, D., & Subleman,
I. (1978). Piagetian theory and neo-Piagetian
analysis as psychological guides in education.
In J. M. Gallagher & J. Easley (Eds.), Knowledge
and Development Vol.2: Piaget and Education. New
York: Plenum Press.

Peterson, L.R. & Peterson, M.J. (1959). Short term
retention of individual items. Journal of
Experimental Psychology. 58. 193-198.

Picthrone, B. (1983). A missing link between cognitve
science and classroom practice. Information Science.
II, (4), 218-312.

www.manaraa.com

151
Pierson, Joan K. & Horn, Jeretts A. (1984).

Syntactical errors in programs written by students
in business programming. AEDS Journal. 17(3),
53-60.

Pressman, Rodger, S. (1987). Software Engineering: A
Practioner's Approach (2nd ed.), New York, McGraw-
Hill, Inc.

Q&A User's Manual (1988). Symantec Corporation,
Cupertine, CA

Rameriez M. & Castenda, A. (1979). Cultural
Democracy. Bicognitive Development and Education.
New York, NY: Academic Press.

Rieber, L.P. (1991). "The effects of visual grouping on
learning from computer animated presentations,
in M.R. Simonson & C. Hargrave (Eds.),
13th Proceedings of Selected Research Presentations
of the Association for Education Communications and
Technology. Ames. Iowa: Iowa State University.
681-690.

Reitman, W.R. (1965). Cognition and thought. New York:
Wiley.

www.manaraa.com

152
Resnick, L.B. & Glasser, R. (1976). Problem solving
and intelligence. In L.B. Ressnick (Ed.), The
Nature of Intelligence. Hillsdale, NJ: Erlbaum.

Restle, F. & Davis, J.H. (1962). Success and the speed
of problem solving by individuals and groups.
Psychological Review. 69, 520-536.

Shepard, R.N. & Metzler, J. (1971). Mental rotation of
three dimensional objects. Science. 171, 701-703.

Shneirderman, B. (1980). Software Pvscholoav. New York:
Winthrop Publishers.

Simon, H.A. (1974). How Big is a Chunk? Science. 183,
482-488.

Steinberg, E.R. (1977). Review of student control in
computer-assisted instruction. Journal of Computer
Based Instruction. 3(3), 84-90.

Stern, N. & Stern, R., 1990. Structured COBOL
Programming (6th ed.). New York, NY: John Weily &
Sons.

Swaine, M. (1990). Wrapping up software development
'90. Dr. Dobb1s Journal. 15(4), 119-123.

Tenner, E. The computer and higher education: A new
definition of education? Change. 16(3), 22-27.

www.manaraa.com

153
Tobias, S. (1976). Achievement treatment interaction.

Review of Educational Research , 11(1), 61-74.
Violato, C., Marini, A. & Hunter, W. (1989). A

confirmatory factor analysis of a four factored
model of attitudes towards computers: A study of
preservice teachers. Journal of Research on
Computing in Education. 17(1), 199-213.

Ward, R. (1988). Beyond design: The discipline of
debugging. Computer Language. 37-38.

Winfred, A. & Hart, D., (1990). Empirical relationships
between cognitive ability and computer familiarity.
Journal of Research on Computing in Education ,
11(2), 457-463.

Witkin, H. A. (1949). Perception of body position of
the visual field . Psychological Monograph. 63.
1-46.

Witkin, H. & Goodenough, D. (1981). Cognitive stvle:
Essence and origins. New York: International
Universities Press, Inc.

Witkin, H., Goodenough, D. & Oltman P. (1979).
Physchological differentiation: Cultural status.
Journal of Personality and Social Phvschologv.
12(7), 1127-1145.

www.manaraa.com

154
Witkin, H., Oltman, P. Raskin, E. & Karp, S.

(1971). A manual for the embedded fiauires tests.
Palo Alto, Ca: Consulting Psychologists Press, Inc.

Yourdan, E. & Constantine, L. (1979). Structured
design. Englewood Cliffs, NJ: Prentice-Hall.

www.manaraa.com

APPENDICES

www.manaraa.com

156

APPENDIX A

Prerequisite COBOL Knowledge

Since computer programming debugging is a high level
educational objective, certain low level educational
objectives must first be achieved. Students must learn the
how to develop, edit, code and compile a program.
Construction of program flow charts, structured charts and
pseudocode are considered important program development
skills (Fiengol & Wolf, 1988; Nickerson, 1987; Stern &
Stern,1988). Knowledge of how to use a program editor and
COBOL syntax is an important prerequisite. Before a student
programmer can debug logic errors in a COBOL, they must be
able to code, compile the program and correct any syntax
errors (Nickerson, 1987; Stern & Stern, 1988).

The specific prerequisite skills required to debug logic
errors in a COBOL program are:

1. the program development life cycle,
2. the proper use a program development tool to plan

the coding of a program, i.e., flowcharting or
structure charts,

www.manaraa.com

the proper use of SPFPC, a microcomputer program
editor,
the proper procedures to translate and execute a
COBOL program using MicroFocus Work Bench, a COBOL
program development tool,
the basic coding requirements to write a COBOL
program, which includes syntax of the four
divisions of the source program that will input and
output a sequential data file,
the syntax requirements to perform the three
control structures: (a) sequence, (b) iteration
and, (c) selection.
the syntax and algorithmic requirements to perform
total accumulation, control paging, conditional
calculations and high/low values.
the ability to distinguish between a syntax error,
execution error and a logic error.

www.manaraa.com

158

APPENDIX B

Prerequisite BASIC Knowledge

Since computer programming debugging is a high level
educational objective, certain low level educational
objectives must first be achieved. Students must learn the
how to develop, edit, code and compile a program.
Construction of program flow charts, structured charts and
pseudocode are considered important program development
skills (Fiengol & Wolf, 1988; Nickerson, 1987; Stern & Stern
,1988). Knowledge of how to use a Quick Basic editor and
BASIC syntax is an important prerequisite. Before a student
programmer can debug logic errors in a BASIC, they must be
able to code, compile the program and correct any syntax
errors (Nickerson, 1987; Stern & Stern, 1988).

The specific prerequisite skills required to debug logic
errors in a BASIC program are:

1. the program development life cycle,
2. the proper use a program development tool to plan

the coding of a program, i.e., flowcharting or
structure charts,

3. the proper use of a Quick Basic editor,
4. the proper procedures to save, load and execute a

www.manaraa.com

159
BASIC program using QuickBASIC,

5. the basic coding requirements to write a COBOL
program, which includes the syntax of the source
program that will input and output a sequential
file.

6. the syntax requirements for the three control
structures: sequence, iteration and selection.

7. the syntax and algorithmic requirements to perform
total accumulation, control paging, conditional
calculations and high/low values,

8. the ability to distinguish between a syntax error,
execution error and a logic error,

9. the ability to create and use subprograms.

www.manaraa.com

160

APPENDIX C

Program Syntax and Execution Errors
A syntax error is "an error caused by the violation of

a programming rule" (Stern & Stern, 1991, p.751). Syntax
errors are encountered by programmers when a program is
translated from source code into executable binary code. All
computer programs must be first translated into computer
understandable code, before it can be executed. Typical
syntax errors include: (a) misspelling a programming
statement, (b) incorrect usage of the language punctuation
(called delimiters), (c) incorrect usage of a data type, or
(d) illegal parameters.

An execution error "will prevent program execution.
These errors will result in a program interrupt" (Stern &
Stern, 1991, p. 381). Execution errors will be discovered
after a program is translated and begins to execute. At some
point during a program's execution, the execution error will
cause the program to stop executing. Typical execution
errors include: (a) Inter procedural calls do not match in
number or type, (b) unable to access an external data file,
(c) data file not appropriately opened, (d) data field
overflow, or (e) divide by zero.

www.manaraa.com

161

APPENDIX D
CI201 BUSINESS PROGRAMMING JOSEPH P.(PACKY) LAVERTY
Class Days: Monday, Wednesday and Friday
Office Hours: To be Announced
PREREQUISITE COURSES: AC101 Accounting Principles I and

CI101 Introduction To Computers
or Equivalent

COBOL PREREQUISITE STUDENT ABILITIES:
1) Students should be able to identify and explain the

major hardware and software components of a
microcomputer.

2) Students should be able to understand and execute
MSDOS operating system commands, i.e., FORMAT, DIR,
DISKCOPY, CLS, PRINT, etc.

3) Students should be able to LOGIN to the Novell
microcomputer network system, use the student menu
system. Students should be able to understand the
concepts of printing on a Novell network.

COBOL COURSE DESCRIPTION:
An introduction to structured COBOL and programming
techniques. Logical structure, modular design and
documentation techniques are presented. The student will
become familiar with the syntax and logic of COBOL by
applying the language to a sequence of increasingly complex
business applications. Processing techniques for one-level

www.manaraa.com

162
tables are discussed, and the fundamental elements of
sequential file processing are presented.

COBOL PROGRAMMING COURSE OBJECTIVES:
The fundamental objective of Business Programming is to
introduce the student to the fundamental characteristics and
the application of programming to business through the
COBOL programming language. The important aspects to be
stressed in this class include:
1) Students should be able to apply the concepts of the

program development life cycle to solve various
business problems.

2) Students should able to develop a flowchart that will
graphically illustrate a solution to a business or
scientific problem.

3) Students should be able to understand the syntax of
the COBOL programming language. Selected syntax topics
include: the Four Divisions of a COBOL program,
Sequential file processing (OPEN..READ..WRITE..CLOSE),
iteration (PERFORM ..UNTIL), Data computation (ADD,
SUBTRACT, etc.), logical selection (IF...ELSE, AND,
OR), and single level arrays.

4) Students should be able to write various COBOL that
will perform a required business task.

www.manaraa.com

163
5) Students should be able to Identify and correct

various syntax, execution and logic errors in the
development of their COBOL programs.

6) Students should understand and apply the concepts of
structured programming style in the development of
their COBOL programs.

7) Students will be encouraged to professionally prepare
all assignments and to meet assignment deadlines in a
timely fashion.

TEXTBOOK: "Structured COBOL Programming", (1991), Stern, R.
A., Stern, N., New York, New York: John Wiley & Sons

COURSE MATERIAL: Flowcharting Template, Diskettes: two 3 1/2
inch high density (if you plan to code your program at
school) or, two 5 1/4 inch double density.

TEACHING PROCEDURES:
The methods used in this course include lecture

accompanied by instructional handouts, illustration of
program examples on an overhead computer projection device,
hands-on exercises and program assignments to reinforce the
concepts and applications, and use of the textbook.
GRADE ALLOCATION POLICY points

3 objective tests © 150 points or 45% 450
2 written assignments © 50 points or 10% 100
4 programs (points to be assigned) 300
final examination (comprehensive review) 150

Total 1000

1000-900 A 899-800 B 799-700 C 699-600 D
Below 600 F

www.manaraa.com

164

APPENDIX E

C84/007 BASIC PROGRAMMING JOSEPH P.(PACKY) LAVERTY
Class Days: Tuesday and Thursday
Office Hours: To be announced

BASIC PROGRAMMING COURSE DESCRIPTION

This is the first course in computer science. It is designed
to be of special interest to students majoring in one of the
social sciences or humanities.

BA8IC PROGRAMMING COURSE OBJECTIVES:

1) Students should be able to identify and explain the
major hardware and software components of a
microcomputer.

2) Students should be able to understand and execute
MSDOS operating system commands, i.e., FORMAT, DIR,
DISKCOPY, CLS, PRINT, etc.

3) Students should be able to LOGIN to the Novell
microcomputer network system using the student menu
system. Students should be able to understand the
concepts of printing on a Novell network.

www.manaraa.com

165
4) Students should be able to apply the concepts of the

program development life cycle to solve various
business and scientific problems.

5) Students should be able to understand the syntax of
the QuickBASIC programming language. Selected syntax
topics include: interactive processing (INPUT),
logical selection (IF...THEN), iteration (DO...WHILE),
mathematical functions, string manipulation,
sequential file processing and arrays.

6) Students should be able to develop a flowchart that
will graphically illustrate a solution to a business
or scientific problem.

7) Students should be able to write various Quick Basic
programs that will perform a required business or
scientific task.

8) Students should be able to identify and correct
various syntax, execution and logic errors in the
development of their Quick Basic programs.

9) Students should understand and apply the concepts of
structured programming style in the development of
their Quick Basic programs.

www.manaraa.com

166
10) Students will be encouraged to professionally prepare

all assignments and to meet assignment deadlines in a
timely fashion.

TEXTBOOK: "MICROSOFT QUICKBASIC: An Introduction to
Structured Programming", (1991), Schneider, David, New
Jersey: Dellen Publishing Company, a division of MacMillan
Publishing Company.
COURSE MATERIAL: Flowcharting Template, Diskettes: two 3 1/2
inch high density (if you plan to code your program at
school) or, two 5 1/4 inch double density.
TEACHING PROCEDURES:

The methods used in this course include lecture
accompanied by instructional handouts, illustration of
program examples on an overhead computer projection device,
hands-on exercises and program assignments to reinforce the
concepts and applications, and use of the textbook.
GRADE ALLOCATION POLICY

points
3 objective tests § 150 points or 45%
2 written assignments @ 50 points or 10%
6 programs @ 50 points or 30%
final examination (comprehensive review)

450

150
300
100

Total 1000
1000-900 A 899-800 B 799-700 C 699-600 D
Below 600 F

www.manaraa.com

167

APPENDIX P

PRE-COURSE STUDENT SURVEY

NAME __________________________ SEMESTER
AGE _______ SEX (M) (F) MAJOR

MINOR

1. Total number of college credits earned to date ___________ .
(not including this semester)

2. List any computer/programming language courses that you have
completed.

Course Name Computer Programming
Type Used Language Used

3. List the types of computers that you have used.
(You may write multiple answers.)
High School College Work

4. How long have you used a microcomputer?
(Approx.) Months ___ Years ___

5. Name the microcomputer software packages (ex. Lotus 1-2-3)
that you have used.

6. List any formal training courses on microcomputer hardware or
software that you may have attended (ex. Lotus 1-2-3),
company courses for a day?).

www.manaraa.com

Check only ONB of the following that best describes your
computer availability at home?
I have no computer at home. _________
I have used my computer at home:
A. Mostly for pleasure, i.e., video games. _________
B. Mostly for word processing and spread

sheet homework assignments._________________ _________
C. Mostly for writing computer programs. _________
D. Business _________
E. Telecommunication or networking. _________
F. Any other - please list: _______________________

Are you presently working? Part-time Hours per week
 Full-time Hours per week

Check one of the following that best describes your computer
use at work?
I do not use a computer at work._________________ _________
I have used a computer at work for:
A. Mostly for word processing and preparing

spreadsheets. _________
B. Mostly for writing computer programs.________ _________
C. Any other - please list: _____________________

Check any of the following that may apply to you (you may
check multiple answers).
The reason I took this course was:
A. This course is required. yes no
B. I am interested in learning more about

computers. yes no
C. I am interested in learning more about

computer programming. yes no

www.manaraa.com

In general, describe your ability to use a computer prior to
enrolling in this course.

In general, describe your ability to write a computer program
(in any programming language) prior to enrolling in this
course.

www.manaraa.com

170
APPENDIX G BASIC STUDENT JOURNAL

STUDENT NAME _____________________ SS#________________ WEEK OP

Directionst The purpose of this journal is to gather data of your study and
programming activities in a computer programming course. The information
gathered in this student journal WILL NOT AFFECT YOUR GRADE in the course.
Please respond as accurately and completely as possible.
Enter the date and time (to the nearest quarter hour). If you read your text,
write program code or execute (run) your program by yourself, then check SELF
study. If you read the text, write program code or execute (run) your program
with other students or receive any outside help from a tutor, then check TEAM
study. If one of the STUDY/PROGRAMMING ACTIVITIES listed below describes either
your study or programming activities, then check the appropriate column. If none
of the STUDY/PROGRAMMING ACTIVITIES listed below adequately describes either your
study or programming activities, then please describe your activities in the
column marked "OTHER COMMENTS". These journals will be completed in class every
Thursday.
PLEASE CHECK ONLY ONE COLUMN FOR EACH LINE. USE MULTIPLE LINES IF NECESSARY.

STUDY -- PROGRAMMING ACTIVITIES

DATE
TIME
HH:MM SELF TEAM

READING TEXT
OR HANDOUTS

PREPARE AND
WRITE PROG.

EXECUTE PROG. &
CORRECT ERRORS

OTHER
COMMENTS

If any activity involved TEAM STUDY with another student or if you received help from a tutor, then please
list the person(s) name below. In the column labeled 'RELATIONSHIP", describe their relationship to you,
i.e., another student, school tutor, friend, etc. In the column labeled "VALUE TO YOU", using a scale of 1
to 5, circle the value that represents this person’s contribution in helping you to understand programming.

TEAM MEMBER'S NAME RELATIONSHIP
VALUE TO YOU

NOT VALUABLE SOMEWHAT VALUABLE VERY VALUABLE

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

www.manaraa.com

COBOL STUDENT JOURNAL

171

STUDENT NAME_________________ SS#____________ WEEK O F ______________

Directions: The purpose of this journal is to gather data of your study and programming
activities in a computer programming course. The information gathered in this student
journal WILL NOT AFFECT YOUR GRADE in the course. Please respond as accurately
and completely as possible.

Enter the date and time (to the nearest quarter hour). If you read your text, write program
code or debug a syntax error in your program by yourself, then check SELF study. If you
read the text, write program code or debug a syntax error in your program with other
students or receive any outside help from a tutor, then check TEAM study. If one of the
STUDY/PROGRAMMING ACTIVITIES listed below describes either your study or
programming activities, then check the appropriate column. If none of the
STUDY/PROGRAMMING ACTIVITIES listed below adequately describes either your
study or programming activities, then please describe your activities in the column marked
"OTHER COMMENTS". These journals will be completed in class every Friday.

PLEASE CHECK ONLY ONE COLUMN FOR EACH LINE. USE MULTIPLE LINES
IF NECESSARY.

STUDY — PROGRAMMING ACTIVITIES

DATE
TIME
HH:MM SELF TEAM

READING
TEXT

PREPARE AND
WRITE PROG.

CHECK &
SYNTAX

EXECUTE AND
LOGIC.

OTHER
COMMENTS

If any activity Involved TEAM STUDY with another student or if you received help from a tutor, then please
list the person(s) name below. In the column labeled ‘RELATIONSHIP’, describe their relationship to you,
i.e., another student, school tutor, friend, etc. In the column labeled "VALUE TO YOU*, using a scale of 1
to 5, circle the value that represents this person’s contribution in helping you to understand programming.

TEAM MEMBER'S NAME RELATIONSHIP
VALUE TO YOU

NOT VALUABLE SOMEWHAT VALUABLE VERY VALUABLE

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

www.manaraa.com

APPENDIX H

COBOL PROGRAM DEBUGGING TEST
DIRECTIONS:
This part of the exam requires you to locate and
correct various programming logic errors in a COBOL
program. At the beginning of this debugging test, your
instructor will distribute a floppy disk containing
programs and data files, program documentation and a
answer sheet to you. The floppy disk will contain:
1. a COBOL source code for each program, and
2. the input data files to be used by the programs.
Each program will be accompanied by the following
documentation:
1. a printed copy of the program,
2. a printed copy of the input data file,
3. a description of the program requirements,
4. a description of the program logic error,
5. the current, incorrect printed outputs of the

program, and
6. the required, correct printed outputs of the

program.
Each of the COBOL source programs will contain one

or more logic errors. Each logic error will cause the
program to produce incorrect outputs, or results. None
of the programs will contain any syntax or execution
errors. All programs ..will execute, but will produce
incorrect results.

For each program, you are to locate each program
logic error and write a description of the cause of the
error on your answer sheet. Then you are required to
use the computer to edit and execute the program until
the program will produce the desired outputs, or
results. Your test grade will based upon your ability:

1. to locate and correctly describe the logic
error on your answer sheet, and
2. to correct the logic error and successfully execute the program from your disk to produce the
correct results.

www.manaraa.com

173
You may use and write on any of the printed

documentation provided with your test. You also may use
the computer to help you locate and find the error. An
answer sheet will be provided so that you may describe
the cause of program logic error and to list the
debugging tools that you used to find and/or correct
the error.

At the beginning of the test you will be given the
program documentation and a disk containing all of the
test programs and data files. When you complete the
debugging requirements for each program, hold up your
hand and a test administrator will collect your answer
sheet. At that point, you may continue working on the
next program. You may only work on one program at a
time. Once y o u hand in an answer sheet, y o u may NOT
edit or chance a previous test program on your disk!
Any program that is edited or changed after the answer
sheet has been handed into the test administrator will
receive zero points. However, if you are stuck on a
particular program, you are encouraged to proceed to the next test program.

Each COBOL source program will contain the data
name NOTHING and will DISPLAY SPACE UPON CRT in the
PROCEDURE DIVISION. All printed outputs for the test
programs will be directed to the file MAt PROGX.RPT"
(where X represents your program number) and these
printed outputs may be viewed by using SPFPC.

You will be limited to a maximum of one hour and
twenty minutes to take the exam. At the end of the exam
the instructor will collect your disk and any remaining
answer sheets and program documentation.

www.manaraa.com

174
program l Program Name: PR0G1.CBL
PROGRAM REQUIREMENTS
This program will input a vendor data file, which
contains the vendor's name, background information,
current balance and Y.T.D. information. A traditional
report should be prepared, which should include report
headers, detail lines and total lines. Financial
totals for all vendors should be accumulated for the
current balance, Y.T.D Purchases and Y.T.D. Payments
and a final total line should be printed at the end of
the report.
The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The report totals printed on the total line
are incorrect. You are to find the location of the
logic error that causes the incorrect report totals and
correct the program so that the correct report totals
are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

175
Pat* file for .Program it VENDOR.DAT
Record Layout
Field Name
Vendor Name
Vendor Address
Current Balance
YTD Purchases
YTD Payments

Data Type
Alphanumeric
Alphanumeric
Numeric
Numeric
Numeric

Standish, INC. 0023P.O. BOX 13455 New York, NY 23157
MacMiIlian Mfg.0019745 8th A vs Alberta , NM 63562
J. Smith 09341 Barnes ST. Pgh, PA 15234
Dollars, INC. 945223 Fast Blvd. Sands, CA 65357

000345600001000000019784
000067980045000000008933
000009600000008900234000
000889020001445600008903

Correct Prograsi Output

VENOOR REPORT PAGE: 1

VEN.# VENOOR NAME
23 Standish, INC.
19 MacHiIlian Mfg.

934 J. Smith
9452 Dollars, INC.

ADDRESS
P.O. BOX 13455
745 8th Ave
1 Barnes ST.
23 Fast Blvd.

*** VENDOR REPORT TOTALS * * *

YTD PUR. YTD PMTS BALANCE
100.00 197.84 345.60

4,500.00 89.33 67.98
.89 2,340.00 9.60

144.56 89.03 889.02

4,745.45 2,716.20 1,312.20

Incorrect Proaraai (Nitwit

VENDOR REPORT PAGE:

VEN.* VENDOR NAME ADDRESS
23 Standish, INC. P.O. BOX 13455
19 MacMiIlian Mfg. 745 8th Ave

934 J. Smith 1 Barnes ST.
9452 Dollars, INC. 23 Fast Blvd.

*** VENDOR REPORT TOTALS ***

YTD PUR. YTD PMTS BALANCE
100.00 197.84 345.60

4,500.00 89.33 67.98
.89 2,340.00 9.60

144.56 89.03 889.02

144.56 89.03 889.02

www.manaraa.com

SOURCE PROGRAM 1
IDENTIFICATION DIVISION.
PROGRAM-ID. TESTQ1.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO NA:VENDOR.DAT".

SELECT PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "A:PROG1.RPT".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS SO CHARACTERS
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD PIC X(80).
FD PRINT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X(80).

UORKING-STORAGE SECTION.
01 NAME-ADDRESS-FILE-END.

05 FLAG PIC X(4) VALUE "GO ".
05 NOTHING PIC X.
05 LINE-SPACES PIC X(80) VALUE SPACES.

01 VENDOR-INFORMATION.
05 VENDOR-NAME PIC X(15).
05 VENDOR-NUMBER PIC 9999.
05 VENOOR-ADDRESS PIC X(15).
05 VENDOR-CITY-STATE-ZIP PIC X(20).
05 VENDOR-BALANCE PIC S9(6)V99.
05 VENDOR-YTD-PURCHASES PIC S9(6)V99.
05 VENOOR-YTD-PAYMENTS PIC S9(6)V99.

DETAIL-LINE.
05 VENDOR-NUMBER-DL PIC ZZZZ.
05 FILLER PIC X(1).
05 VENDOR-NAME-DL PIC X(15).
05 FILLER PIC X(1).
05 VENDOR-ADDRESS-DL PIC X(15).
05 FILLER PIC X(1).
05 VENDOR-YTD-PURCHASES-DL PIC ZZ.ZZZ.99.
05 FILLER PIC X(1).
05 VENDOR-YTD-PAYMENTS-DL PIC ZZ.ZZZ.99.
05 FILLER PIC X{1).
05 VENDOR-BALANCE-DL PIC --.--.99

01 HEADER-LINE-1.
05 FILLER PIC X<26).
05 FILLER PIC X(20) VALUE "VENDOR REPORT"
05 FILLER PIC X(12).
05 FILLER PIC X<6> VALUE "PAGE: ".
05 PAGE-NUMBER-OUT PIC ZZ.

01 HEADER-LINE-2.
05 FILLER PIC X(5) VALUE "VEN.#".
05 FILLER PIC X(1).
05 FILLER PIC X(13) VALUE "VENDOR NAME1
05 FILLER PIC X(01).
05 FILLER PIC X(17) VALUE " ADDRESS".
05 FILLER PIC X(1).
05 FILLER PIC X(8) VALUE "YTD PUR.".
05 FILLER PIC X(1).
05 FILLER PIC X(9) VALUE " YTD PMTS".
05 FILLER PIC X(1).
05 FILLER PIC X(11) VALUE » BALANCE"

www.manaraa.com

177
01 TOTAL-LINE.

05 FILLER
05 FILLER

PIC X(05).
PIC X(30)

VALUE “***
05 FILLER
05 VENDOR-YTD-PURCHASES-TL
05 FILLER
05 VENOOR-YTD-PAYHENTS-TL
05 FILLER
05 VENOOR-BALANCE-TL

01 ACCUMULATORS.

VENDOR REPORT TOTALS ***"
PIC X(2>.
PIC ZZ.ZZZ.99.
PIC X(1).
PIC ZZ.ZZZ.99.
PIC X(1).
PIC ---,---.99.

05 TOTAL-YTD-PURCHASES
05 TOTAL-YTO-PAYMENTS
05 TOTAL-BALANCE

PIC S9(6)V99
PIC S9(6)V99
PIC S9(9)V99,

01 PAGE-CONTROL.
05 PAGE-COUNT
05 LINE-COUNT
05 PAGE-SIZE

PIC 999,
PIC 999,
PIC 999

PROCEDURE DIVISION.
START-HERE.

DISPLAY SPACE UPON CRT.
PERFORM INITIALIZE-VALUES.
PERFORM OPEN-FILES.
PERFORM READ-RECORD.
PERFORM PROCESS-REPORT UNTIL FLAG * "STOP".
PERFORM ACCUMULATE-TOTALS.
PERFORM PRINT-TOTALS.
PERFORM CLOSE-FILES.
STOP RUN.

INITIALIZE-VALUES.
MOVE "GO " TO FLAG.
MOVE ZEROES TO TOTAL-YTD-PURCHASES.
MOVE ZEROES TO TOTAL-YTD-PAYMENTS.
MOVE ZEROES TO TOTAL-BALANCE.
MOVE 1 TO PAGE-COUNT.
MOVE 999 TO LINE-COUNT.
MOVE 20 TO PAGE-SIZE.

PROCESS-HEADERS.
MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
WRITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM HEADER-LINE-2 AFTER ADVANCING 1.
ADD 1 TO PAGE-COUNT.
MOVE ZEROES TO LINE-COUNT.

PRINT-TOTALS.
MOVE TOTAL-BALANCE TO VENDOR-BALANCE-TL.
MOVE TOTAL-YTD-PURCHASES TO VENDOR-YTD-PURCHASES-TL.
MOVE TOTAL-YTD-PAYMENTS TO VENDOR-YTD-PAYMENTS-TL.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM TOTAL-LINE AFTER ADVANCING 1.

PROCESS-REPORT.
IF LINE-COUNT > PAGE-SIZE

PERFORM PROCESS-HEADERS.
PERFORM MOVE-DATA.
PERFORM WRITE-RECORD.
PERFORM TOTAL-LINES.
PERFORM READ-RECORD.

WRITE-RECORD.
WRITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1.

ACCUMULATE-TOTALS.
ADD VENDOR-BALANCE TO TOTAL-BALANCE.
ADO VENDOR-YTD-PURCHASES TO TOTAL-YTD-PURCHASES.
ADD VENDOR-YTD-PAYMENTS TO TOTAL-YTD-PAYMENTS.

www.manaraa.com

178
MOVE-DATA.

MOVE VENDOR-NUMBER
MOVE VENOOR-NAME
MOVE VENDOR-ADORESS
MOVE VENDOR-BALANCE
MOVE VENOOR-YTO-PURCHASES
MOVE VENOOR-YTD-PAYMENTS

TOTAL-LINES.
ADD 1 TO LINE-COUNT.

READ-RECORD.
READ INPUT-FILE INTO VENOOR-INFORMATION

AT ENO MOVE "STOP" TO FLAG.

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

TO VENOOR-NUMBER-DL.
TO VENDOR-NAME-DL.
TO VENOOR-ADORESS-DL.
TO VENDOR-BALANCE-OL.
TO VENOOR-YTD-PURCHASES-DL.
TO VENOOR-YTD-PAYMENTS-DL.

CLOSE-FILES.
CLOSE INPUT-FILE

PRINT-FILE.

www.manaraa.com

179
program 2 program Name: PR0G2.CBL
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A traditional
report should be prepared, which should include report
headers, detail lines and total lines reporting the
average student Q.P.A. Each detail line should report
the individual student's Q.P.A. An individual student's
Q.P.A. is calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. =---------------------------

STUDENT CREDITS TO DATE
Total student quality points and total student credits
to date should be accumulated for all students and the
average student Q.P.A. should be calculated by using
the following formula and reported on the final total
line.

AVERAGE TOTAL STUDENT QUALITY POINTS
STUDENT Q.P.A. = ------------------------------

TOTAL STUDENT CREDITS TO DATE
The input record layout and correct report output are
provided on the next page.
DESCRIPTION 07 THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The individual student Q.P.A. is incorrect,
but the average student Q.P.A. is correct. You are to
find the location of the logic error that causes the
incorrect student Q.P.A. and correct the program so
that the correct report totals are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

180
Input Data file for Program 2: 8TUDENTP.DAT
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

Data Type
Alphanumer ic
Numeric
Numeric
Numeric

Mary Jones 001400400010
Doug Smith 002100300015
Adam Upp 000200200012
Bart Simpson 000700300010

Correct Proaraai Output

STUDENT OPA REPORT PAGE: 1

STUD. # STUDENT NAME CREDITS QUAL.PTS OPA
14 Mary Jones 10 40 4.00
21 Doug Smith 15 30 2.00
2 Adam Upp 12 20 1.66
7 Bart Simpson 10 30 3.00

* * * AVERAGE STUDENT QPA *** 2.55

Incorrect Program Output

STUDENT QPA REPORT PAGE: 1

STUD. * STUDENT NAME CREDITS QUAL.PTS OPA
14 Mary Jones 10 40
21 Doug Smith 15 30 4.00
2 Adam Upp 12 20 2.00
7 Bart Simpson 10 30 1.66

* * * AVERAGE STUDENT OPA *** 2.55

www.manaraa.com

SOURCE PROGRAM TWO
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST02.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "C:STUDENTD.DAT".

SELECT PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "C:PROG2.RPTH.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD PIC X(80).
FD PRINT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X(80).

WORKING-STORAGE SECTION.
01 NAME-ADDRESS-FILE-END

05 FLAG
05 NOTHING
05 LINE-SPACES

01 STUDENT-INFORMATION.
05 STUDENT-NAME
05 STUDENT-NUMBER
05 STUDENT-QUALITY-POINTS
05 STUDENT-CREDITS-TO-DATE

01 DETAIL-LINE.
05 STUDENT-NUMBER-DL
05 FILLER
05 STUDENT-NAME-DL
05 FILLER
05 STUDENT-CREDITS-TO-DATE-DL
05 FILLER
05 STUOENT-QUALITY-POINTS-DL
05 FILLER
05 STUOENT-QPA-DL

01 HEADER-LINE-1.
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 PAGE-NUMBER-OUT

01 HEADER-LINE-2.

PIC X(4) VALUE "GO ".
PIC X.
PIC X(80) VALUE SPACES.

PIC X(20).
PIC 9999.
PIC 9(4).
PIC 9(4).

PIC ZZZZ.
PIC X(6).
PIC X(20).
PIC X(2).
PIC ZZZZ.
PIC X(11).
PIC ZZZZ.
PIC X(10).
PIC Z.99.

PIC X(17).
PIC X(20) VALUE "STUDENT QPA REPORT"
PIC X(19).
PIC X(6) VALUE "PAGE: ".
PIC ZZ.

FILLER
FILLER

05 FILLER
05 FILLER

FILLER
FILLER
FILLER
FILLER
FILLER

05
05

05
05
05
0505

PIC X{8) VALUE "STUD. #".
PIC X(3).
PIC X(13) VALUE "STUDENT NAME".
PIC X(08).
PIC X(07) VALUE "CREDITS".
PIC X(07).
PIC X(08) VALUE "QUAL.PTS".
PIC X(08).
PIC X(08) VALUE "OPA".

01 TOTAL-LINE.
05 FILLER
05 FILLER

05 FILLER
VALUE

05 STUDENT-AVERAGE-QPA-TL

PIC X(18).
PIC X(30)

AVERAGE STUDENT QPA *•*".
PIC X(13).
PIC Z.99.

www.manaraa.com

182
01 ACCUMULATORS.

05 TOTAL-QUALITY-POINTS
05 TOTAL-CREDITS-TO-DATE

PIC S9(6)V99,
PIC S9(6)V99,

01 PAGE-CONTROL.
05 PAGE-COUNT
05 LINE-COUNT
05 PAGE-SIZE

PIC 999,
PIC 999,
PIC 999,

PROCEDURE DIVISION.
START-HERE.

DISPLAY SPACE UPON CRT.
PERFORM INITIALIZE-VALUES.
PERFORM OPEN-FILES.
PERFORM READ-RECORD.
PERFORM PROCESS-REPORT UNTIL FLAG * "STOP".
PERFORM PRINT-TOTALS.
PERFORM CLOSE-FILES.
STOP RUN.

INITIALIZE-VALUES.
MOVE "GO M TO FLAG.
MOVE ZEROES TO TOTAL-QUALITY-POINTS.
MOVE ZEROES TO TOTAL-CREDITS-TO-DATE.
MOVE 1 TO PAGE-COUNT.
MOVE 999 TO LINE-COUNT.
MOVE 20 TO PAGE-SIZE.

PROCESS-HEADERS.
MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
WRITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM HEADER-LINE-2 AFTER ADVANCING 1.
ADD 1 TO PAGE-COUNT.
MOVE ZEROES TO LINE-COUNT.

PRINT-TOTALS.
COMPUTE STUDENT-AVERAGE-QPA-TL «

TOTAL-QUALITY-POINTS/TOTAL-CREDITS-TO-DATE.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM TOTAL-LINE AFTER ADVANCING 1.

PROCESS-REPORT.
IF LINE-COUNT > PAGE-SIZE

PERFORM PROCESS-HEADERS.
PERFORM MOVE-DATA.
PERFORM ACCUMULATE-TOTALS.
PERFORM WRITE-RECORD.
PERFORM CALCULATE-QPA.
PERFORM TOTAL-LINES-PRINTED.
PERFORM READ-RECORD.

WR1TE * RECORD
WRITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1.

ACCUMULATE-TOTALS.
ADD STUOENT-QUALITY-POINTS TO TOTAL-QUALITY-POINTS.
ADD STUDENT-CREDITS-TO-DATE TO TOTAL-CREDITS-TO-DATE.

MOVE-DATA.
MOVE STUDENT-NUMBER TO STUDENT-NUMBER-DL.
MOVE STUDENT-NAME TO STUDENT-NAME-DL.
MOVE STUDENT-QUALITY-POINTS TO STUDENT-QUALITY-POINTS-DL.
MOVE STUDENT-CREDITS-TO-DATE TO

STUDENT-CREDITS-TO-DATE-DL.

CALCULATE-QPA.
COMPUTE STUDENT-OPA-DL *

STUDENT-QUALITY-POINTS/ STUDENT-CREDITS-TO-DATE.

TOTAL-LINES-PRINTED.
ADD 1 TO LINE-COUNT.

www.manaraa.com

183

READ-RECORD.
READ INPUT-FILE INTO STUDENT-INFORMATION

AT END MOVE "STOP" TO FLAG.

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

CLOSE-FILES.
CLOSE INPUT-FILE

PRINT-FILE.

www.manaraa.com

184
PROGRAM 3 Program Name: PROG3.CBL
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A high/low
analysis report should be prepared, which should
include report headers, detail lines and final report
lines reporting the name of the student and their
Q.P.A., who received either the highest or the lowest
Q.P.A. Each detail line should report the individual
student's Q.P.A. An individual student's Q.P.A. is
calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. = -------------------------

STUDENT CREDITS TO DATE

The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The analysis lines provided at the end of the
student report, which lists the student with the
highest and lowest Q.P.A.. are incorrect. You are to
find the location of the logic error that causes the
program to report the incorrect highest Q.P.A. and
lowest Q.P.A.. You are to correct the program so that
the correct highest and lowest Q.P.A. with
corresponding student's name are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

185
Input Data file for Program 3: 8TPDBNTD.DAT
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

Data Type
Alphanumeric
Numeric
Numeric
Numeric

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

001400400010
002100300015
000200200012
000700300010

Correct Program Output

STUDENT QPA REPORT PAGE: 1

STUD. # STUDENT NAME CREDITS QUAL.PTS QPA
14 Mary Jones 10 40 4.00
21 Doug Smith 15 30 2.00
2 Adam Upp 12 20 1.66
7 Bart Simpson 10 30 3.00

Mary Jones HAS THE HIGHEST AVERAGE OF 4.00
Adam Upp HAS THE LOWEST AVERAGE OF 1.66

Incorrect Program Outout

STUDENT OPA REPORT PAGE: 1

STUD. # STU0ENT NAME CREDITS QUAL.PTS QPA
14 Mary Jones 10 40 4.00
21 Doug Smith 15 30 2.00
2 Adam Upp 12 20 1.66
7 Bart Simpson 10 30 3.00

Bart Simpson HAS THE HIGHEST AVERAGE OF 3.00
Bart Simpson HAS THE LOWEST AVERAGE OF 3.00

www.manaraa.com

SOURCE PROGRAM 3

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST03.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "A:STUDENTD.DAT".

SELECT PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "A:PROG3.RPT".

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORD PIC X(80).
FD PRINT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X(80).

WORKING-STORAGE SECTION.
01 NAME-ADDRESS-FILE-END.

OS FLAG PIC X(4) VALUE "GO ".
05 NOTHING PIC X.
05 LINE-SPACES PIC X(80) VALUE SPACES.
05 QPA-MATH PIC 9V99 VALUE ZERO.

01 STUDENT-INFORMAT ION.
05 STUOENT-NAME PIC X(20).
05 STUDENT-NUMBER PIC 9999.
05 STUOENT-QUALITY-POINTS PIC 9(4).
05 STUDENT-CREDITS-TO-DATE PIC 9(4).

01 DETAIL-LINE.
05 STUDENT-NUMBER-DL PIC ZZZZ.
05 FILLER PIC X(6).
05 STUOENT-NAME-DL PIC X(20)
05 FILLER PIC X(2).
05 STUDENT-CREDITS-TO-DATE-DL PIC ZZZZ.
05 FILLER PIC X(11)
05 STUDENT-QUALITY-POINTS-DL PIC ZZZZ.
05 FILLER PIC X(10)
05 STUDENT-QPA-DL PIC Z.99.

01 HEADER-LINE-1.
05 FILLER PIC X(17).
05 FILLER PIC X(20) VALUE "STUDENT OPA REPORT"
05 FILLER PIC X{19).
05 FILLER PIC X(6) VALUE "PAGE: ".
05 PAGE-NUMBER-OUT PIC ZZ.

01 HEADER-LINE-2.
05 FILLER PIC X(8) VALUE "STUD. #".
05 FILLER PIC X(3).
05 FILLER PIC X(13) VALUE "STUDENT NAME".
05 FILLER PIC X(08).
05 FILLER PIC X(07) VALUE "CREDITS".
05 FILLER PIC X(07).
05 FILLER PIC X(08) VALUE "QUAL.PTS".
05 FILLER PIC X(08).
05 FILLER PIC X(08) VALUE "QPA".

www.manaraa.com

187

01 HICH-LOU-FIELDS.
05 HIGH-QPA
05 LOW-OPA
05 HIGH-STUDENT-NAME
05 LOU-STUDENT-NAME

PIC 999V99
PIC 999V99
PIC X(20).
PIC X(20).

01 HIGH-LINE.
05 HIGH-STUDENT-NAME-HL
05 FILER

PIC X(20).
PIC X(28) VALUE

" HAS THE HIGHEST AVERAGE OF «
05 HIGH-QPA-HL

01 LOW-LINE.
PIC ZZZ.99,

05 LOU-STUDENT-NAME-LL
05 FILER

PIC X(20).
PIC X(28) VALUE

" HAS THE LOUEST AVERAGE OF "
05 LOW-OPA-LL

01 PAGE-CONTROL.
PIC ZZZ.99,

05 PAGE-COUNT
05 LINE-COUNT
05 PAGE-SIZE

PIC 999
PIC 999,
PIC 999,

PROCEDURE DIVISION.
START-HERE.

DISPLAY SPACE UPON CRT.
PERFORM INITIALIZE-VALUES.
PERFORM OPEN-FILES.
PERFORM READ-RECORD.
PERFORM PROCESS-REPORT UNTIL FLAG * "STOP".
PERFORM FIND-HIGH-QPA.
PERFORM FIND-LOW-QPA.
PERFORM PRINT-HIGH-LOW.
PERFORM CLOSE-FILES.
STOP RUN.

INITIALIZE-VALUES.
MOVE "GO " TO FLAG.
MOVE 1 TO PAGE-COUNT.
MOVE 999 TO LINE-COUNT.
MOVE 20 TO PAGE-SIZE.
MOVE ZEROES TO HIGH-OPA.
MOVE 999 TO LOW-OPA.

PRINT-HIGH-LOU.
MOVE HIGH-OPA TO HIGH-QPA-HL.
MOVE HIGH-STUDENT-NAME TO HIGH-STUDENT-NAME-HL.
MOVE LOU-QPA TO LOU-QPA-LL.
MOVE LOU-STUDENT-NAME TO LOW-STUDENT-NAME-LL.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM HIGH-LINE AFTER ADVANCING 1 LINES.
WRITE PRINT-RECORO FROM LOU-LINE AFTER ADVANCING 1 LINES.

PROCESS-HEADERS.
MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
WRITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
WRITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORD FROM HEADER-LINE-2 AFTER ADVANCING 1.
ADD 1 TO PAGE-COUNT.
MOVE ZEROES TO LINE-COUNT.

PROCESS-REPORT.
IF LINE-COUNT > PAGE-SIZE

PERFORM PROCESS-HEADERS.
PERFORM MOVE-DATA.
PERFORM CALCULATE-QPA.
PERFORM WRITE-RECORD.
PERFORM TOTAL-LINES-PRINTED.
PERFORM READ-RECORD.

WRITE-RECORD.
WRITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1.

www.manaraa.com

188
FIND-HIGH-QPA.

IF HIGH-OPA < OPA-MATH
MOVE OPA-MATH TO HIGH-OPA
MOVE STUDEHT-NAME TO HIGH-STUDENT-NAME.

FIND-LOW-QPA.
IF LOW-OPA > OPA-MATH

MOVE OPA-MATH TO LOW-OPA
MOVE STUDENT-NAME TO LOU-STUDENT-NAME.

MOVE-DATA.
MOVE STUDENT-NUMBER TO STUDENT-NUMBER-DL.
MOVE STUDENT-NAME TO STUDENT-NAME-DL.
MOVE STUDENT-QUALITY-POINTS TO STUDENT-QUALITY-POINTS-DL.
MOVE STUDENT-CREDITS-TO-DATE TO

STUDENT-CREDITS-TO-DATE-DL.

CALCULATE-QPA.
COMPUTE STUDENT-QPA-DL QPA-MATH -

STUDENT-QUALITY-POINTS/ STUDENT-CREDITS-TO-OATE.

TOTAL-LINES-PRINTED.
ADD 1 TO LINE-COUNT.

READ-RECORD.
READ INPUT-FILE INTO STUDENT-INFORMATION

AT END MOVE "STOP" TO FLAG.

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

CLOSE-FILES.
CLOSE INPUT-FILE

PRINT-FILE.

www.manaraa.com

189
program 4 Program Name: PR0G4.CBL
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A high/low
analysis report should be prepared, which should
include report headers, detail lines and final report
lines reporting the name of the student and their
Q.P.A., who received either the highest or the lowest
Q.P.A. Each detail line should report the individual
student's Q.P.A. An individual student's
Q.P.A. is calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. = -------------------------

STUDENT CREDITS TO DATE

The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The analysis lines provided at the end of the
student report, which lists the student with the
highest and lowest Q.P.A.. are incorrect. You are to
find the location of the logic error that causes the
program to report the incorrect highest Q.P.A. and
lowest Q.P.A.. You are to correct the program so that
the correct highest and lowest Q.P.A. with
corresponding student's name are provided.
There are TWO logic errors in this program.

The complete program listing follows.

www.manaraa.com

190
Input Data file for Program 4: 8TUDENTP.dat
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

Data Type
Alphanumeric
Numeric
Numeric
Numeric

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

001400400010
002100300015
000200200012
000700300010

Correct Program Output

STUDENT OPA REPORT PAGE: 1

STUD. # STUDENT NAME CREDITS QUAL.PTS QPA
14 Mary Jones 10 40 4.00
21 Doug Smith 15 30 2.00
2 Adam Upp 12 20 1.66
7 Bart Simpson 10 30 3.00

Mary Jones HAS THE HIGHEST AVERAGE OF 4.00
Adam Upp HAS THE LOWEST AVERAGE OF 1.66

Incorrect Proorms Output

STUDENT QPA REPORT PAGE: 1

STUD. # STUDENT NAME CREDITS QUAL.PTS QPA
14 Mary Jones 10 40 4.00
21 Doug Smith 15 30 2.00
2 Adam Upp 12 20 1.66
7 Bart Simpson 10 30 3.00

HAS THE HIGHEST AVERAGE OF .00
Mary Jones HAS THE LOWEST AVERAGE OF .00

www.manaraa.com

191
SOURCE PROGRAM 4

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST04.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "A:STUDENTD.DAT".

SELECT PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO NA:PROG4.RPTH.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS
DATA RECORO IS INPUT-RECORD.

01 INPUT-RECORD PIC X(80).
FD PRINT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X(80).

WORKING-STORAGE SECTION.
01 NAME-ADDRESS-FILE-END.

OS FLAG PIC X(4) VALUE "GO ".
05 NOTHING PIC X.
05 LINE-SPACES PIC X(80) VALUE SPACES.
05 OPA-MATH PIC 9V99 VALUE ZERO.

01 STUDENT-INFORMATION.
05 STUDENT-NAME PIC X(20).
05 STUDENT-NUMBER PIC 9999.
05 STUDENT-QUALITY- POINTS PIC 9(4).
05 STUDENT-CREDITS- TO-DATE PIC 9(4).

01 DETAIL-LINE.
05 STUDENT-NUMBER-DL PIC ZZZZ.
05 FILLER PIC X(6).
05 STUDENT-NAME-DL PIC X(20).
05 FILLER PIC X(2).
05 STUDENT-CREDITS- TO-DATE-DL PIC ZZZZ.
05 FILLER PIC X(11).
05 STUDENT-QUALITY- POINTS-DL PIC ZZZZ.
05 FILLER PIC X(10).
05 STUDENT-OPA-DL PIC Z.99.

01 HEADER-L1NE-1.
05 FILLER PIC X(17).
05 FILLER PIC X(20) VALUE "STUDENT QPA
05 FILLER PIC X(19).
05 FILLER PIC X(6) VALUE "PAGE: ".
05 PAGE-NUMBER-OUT PIC ZZ.

01 HEADER-LINE-2.
05 FILLER PIC X(8) VALUE "STUO. #".
05 FILLER PIC X(3).
05 FILLER PIC X(13) VALUE "STUDENT NAME*
05 FILLER PIC X(08).
05 FILLER PIC X(07) VALUE "CREDITS".
05 FILLER PIC X(07).
05 FILLER PIC X(08) VALUE "QUAL.PTS".
05 FILLER PIC X(08).
05 FILLER PIC X(08) VALUE "QPA".

www.manaraa.com

192
01 HIGH-LOU-FIELDS.

05 HIGH-OPA
05 LOU-QPA
05 HIGH-STUDENT-NAME
05 LOU-STUDENT-NAME

PIC 999V99
PIC 999V99
PIC X(20).
PIC X(20).

01 HIGH-LINE.
05 HIGH-STUDENT-NAME-HL
05 FILER

PIC X(20).
PIC X(28) VALUE

" HAS THE HIGHEST AVERAGE OF N
05 HIGH-OPA-HL PIC ZZZ.99

01 LOU-LINE.
05 LOU-STUDENT-NAME-LL
05 FILER

PIC X(20).
PIC X(28) VALUE

" HAS THE LOUEST AVERAGE OF "
05 LOU-QPA-LL PIC ZZZ.99.

01 PAGE-CONTROL.
05 PAGE-COUNT
05 LINE-COUNT
05 PAGE-SIZE

PIC 999
PIC 999
PIC 999

PROCEDURE DIVISION.
START-HERE.

DISPLAY SPACE UPON CRT.
PERFORM INITIALIZE-VALUES.
PERFORM OPEN-FILES.
PERFORM READ-RECORD.
PERFORM PROCESS-REPORT UNTIL FLAG « "STOP11.
PERFORM PRINT-HIGH-LOW.
PERFORM CLOSE-F1LES.
STOP RUN.

PROCESS-REPORT.
IF LINE-COUNT > PAGE-SIZE

PERFORM PROCESS-HEADERS.
PERFORM MOVE-DATA.
PERFORM FIND-HIGH-QPA.
PERFORM FIND-LOW-QPA.
PERFORM CALCULATE-QPA.
PERFORM WRITE-RECORD.
PERFORM TOTAL-LINES-PRINTED.
PERFORM READ-RECORD.

INITIALIZE-VALUES.
MOVE "GO " TO FLAG.
MOVE 1 TO PAGE-COUNT.
MOVE 999 TO LINE-COUNT.
MOVE 20 TO PAGE-SIZE.
MOVE ZEROES TO H1GH-QPA.
MOVE 999 TO LOW-QPA.

PRINT-HIGH-LOW.
MOVE HIGH-QPA TO HIGH-QPA-HL.
MOVE HIGH-STUDENT-NAME TO HIGH-STUDENT-NAME-HL.
MOVE LOU-QPA TO LOU-QPA-LL.
MOVE LOU-STUDENT-NAME TO LOU-STUDENT-NAME-LL.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
WRITE PRINT-RECORO FROM HIGH-LINE AFTER ADVANCING 1 LINES.
URITE PRINT-RECORD FROM LOU-LINE AFTER ADVANCING 1 LINES.

PROCESS-HEADERS.
MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
URITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
URITE PRINT-RECORO FROM HEADER-LINE-2 AFTER ADVANCING 1.
ADO 1 TO PAGE-COUNT.
MOVE ZEROES TO LINE-COUNT.

URITE-RECORD.
URITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1.

www.manaraa.com

193

MOVE-DATA.
MOVE STUDENT-NUMBER TO STUDENT-NUMBER-DL.
MOVE STUDENT-NAME TO STUDENT-NAME-DL.
MOVE STUDENT-QUALITY-POINTS TO STUDENT-QUALITY-POINTS-DL.
MOVE STUDENT-CREDITS-TO-DATE TO

STUDENT-CREDITS-TO-DATE-DL.

CALCULATE-QPA.
COMPUTE STUDENT-QPA-DL QPA-MATH >

STUDENT-QUALITY-POINTS/ STUDENT-CREDITS-TO-DATE.

TOTAL-LINES-PRINTED.
ADD 1 TO LINE-COUNT.

FIND-HIGH-QPA.
IF HIGH-OPA > OPA-MATH

MOVE QPA-MATH TO HIGH-QPA
MOVE STUDENT-NAME TO HIGH-STUDENT-NAME.

FINO-LOU-QPA.
IF LOU-QPA > QPA-MATH

MOVE QPA-MATH TO LOU-QPA
MOVE STUDENT-NAME TO LOU-STUOENT-NAME.

READ-RECORD.
READ INPUT-FILE INTO STUDENT-INFORMATION

AT ENO MOVE "STOP" TO FLAG.

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

CLOSE-FILES.
CLOSE INPUT-FILE

PRINT-FILE.

www.manaraa.com

194
PROGRAM 5 Program Name: PROG5.CBL
PROGRAM REQUIREMENTS
This program will input a vendor data file, which
contains the vendor's name, background information,
current balance and Y.T.D. information. A traditional
report should be prepared, which should include report
headers, detail lines and total lines. Financial
totals for all vendors should be accumulated for the
current balance, Y.T.D Purchases and Y.T.D. Payments
and a final total line should be printed at the end of
the report. Following the final total line a
distribution analysis report should appear, listing the
dollar amount and percentage of the vendor's
outstanding balance "under 500 dollars" and "over 500
dollars" due.
The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The total balance printed on the total line
are incorrect. In addition, the results of the
distribution analysis are incorrect. You are to find
the location of the logic errors that causes the
incorrect total balance and distribution report and
correct the program so that the correct distribution
report and total balances are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

195
Pat*, file for Program 5: VENDOR*DAT
Record Layout
Field Name
Vendor Name
Vendor Address
Current Balance
YTD Purchases
YTD Payments

Data Type
Alphanumeric
Alphanumeric
Numeric
Numeric
Numeric

Standish, INC. 0023P.O. BOX 13455 New York, NY 23157
MacMiIlian Mfg.0019745 8th Ave Alberta , NM 63562
J. Smith 09341 Barnes ST. Pgh, PA 15234
Dollars. INC. 945223 Fast Blvd. Sands, CA 65357

000345600001000000019784
000067980045000000008933
000009600000008900234000
000889020001445600008903

Correct Proorma ftitcut

VENDOR REPORT PAGE: 1

VEN.# VENDOR NAME
23 Standish, INC.
19 MacMiIlian Mfg.

934 J. Smith
9452 Dollars, INC.

ADDRESS
P.O. BOX 13455
745 8th Ave
1 Barnes ST.
23 Fast Blvd.

*** VENDOR REPORT TOTALS ***

YTD PUR. YTD PMTS BALANCE
100.00 197.84 345.60

4,500.00 89.33 67.98
.89 2,340.00 9.60

144.56 89.03 889.02

4,745.45 2,716.20 1,312.20

DISTRIBUTION ANALYSIS REPORT

UNDER 500 DOLLARS BALANCE
OVER 500 DOLLARS BALANCE

DOLLARS PRECENT

423.18
889.02

32.24
67.75

Incorrect Program Output

VENDOR REPORT PAGE: 1

VEN.# VENDOR NAME ADDRESS YTD PUR. YTD PMTS BALANCE
23 Standish, INC. P.O. BOX 13455 100.00 197.84 345.60
19 MacMiIlian Mfg. 745 8th Ave 4,500.00 89.33 67.98

934 J. Smith 1 Barnes ST. .89 2,340.00 9.60
9452 Dollars, INC. 23 Fast Blvd. 144.56 89.03 889.02

* * * VEN00R REPORT TOTALS *** 4,745.45 2,716.20 1,735.38

DISTRIBUTION ANALYSIS REPORT
DOLLARS PRECENT

UNDER 500 DOLLARS BALANCE 423.18 24.38
OVER 500 DOLLARS BALANCE 889.02 51.22

www.manaraa.com

SOURCE PROGRAM 5
IDENTIFICATION DIVISION.
PROGRAM-ID. TESTQ5.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FILE-CONTROL.

SELECT INPUT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO "A.VENDOR.DAT".

SELECT PRINT-FILE
ORGANIZATION IS LINE SEQUENTIAL
ASSIGN TO HA:PROG5.RPTH.

DATA DIVISION.
FILE SECTION.
FD INPUT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 80 CHARACTERS
DATA RECORD IS INPUT-RECORD.

01 INPUT-RECORO PIC X(80).
FD PRINT-FILE

LABEL RECORDS ARE STANDARD
RECORD CONTAINS 132 CHARACTERS
DATA RECORD IS PRINT-RECORD.

01 PRINT-RECORD PIC X<80).

WORKING-STORAGE SECTION.
01 NAME-ADDRESS-FILE-END.

05 FLAG
05 NOTHING
05 LINE-SPACES

PIC X(4) VALUE "GO ".
PIC X.
PIC X(80) VALUE SPACES.

01 VENDOR-INFORMATION.
05 VENDOR-NAME PIC X(15).
05 VEND0R-NUM8ER PIC 9999.
05 VENDOR-ADDRESS PIC X(15).
05 VENDOR-CITY-STATE-ZIP PIC X(20).
05 VENOOR-BALANCE PIC S9(6)V99.
05 VENDOR-YTD-PURCHASES PIC S9(6)V99.
05 VENOOR-YTD-PAYMENTS PIC S9(6)V99.

01 DETAIL-LINE.
05 VENDOR-NUMBER-DL PIC ZZZZ.
05 FILLER PIC X<1).
05 VENDOR-NAME-DL PIC X<15).
05 FILLER PIC X(1).
05 VENDOR-ADDRESS-DL PIC X<15 >.
05 FILLER PIC X(1).
05 VENDOR-YTD-PURCHASES-DL PIC ZZ.ZZZ.99.
05 FILLER PIC X(1).
05 VENDOR•YTD-PAYMENTS-DL PIC ZZ.ZZZ.99.
05 FILLER PIC X(1).
05 VENDOR-BALANCE-DL PIC --.--.99

01 HEADER-LINE-1.
05 FILLER PIC X(26).
05 FILLER PIC X(20) VALUE "VENDOR
05 FILLER PIC X(12).
05 FILLER PIC X(6) VALUE "PAGE: ”
05 PAGE-NUMBER-OUT PIC ZZ.

01 HEADER-LINE-2.
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC
05 FILLER PIC

X(5) VALUE "VEN.#".
X(1).
X(13) VALUE "VENDOR NAME".
X(01).
X(17) VALUE " ADDRESS".
X<1).
X(8) VALUE "YTD PUR.".
X(1).
X(9) VALUE " YTD PMTS".
X(1).
X(11) VALUE " BALANCE".

www.manaraa.com

197
01 TOTAL-LINE.

05 FILLER PIC X(05).
05 FILLER PIC XC30)

VALUE "*** VENDOR REPORT TOTALS ***"
05 FILLER PIC X(2).
05 VENOOR-YTD-PURCHASES-TL PIC ZZ,ZZZ.99.
05 FILLER PIC X<1).
05 VENOOR-YTD-PAYMENTS-TL PIC ZZ,ZZZ.99.
05 FILLER PIC XC1).
05 VENOOR-BALANCE-TL PIC — , — .99.

01 DISTRIBUTION-HEADER-1.
05 FILLER PIC X(30)

VALUE "DISTRIBUTION ANALYSIS REPORT

01 DISTRIBUTION-HEADER-2.
05 FILLER
05 FILLER

VALUE "DOLLARS".
05 FILLER
05 FILLER

VALUE "PRECENT".

01 DISTRIBUTION-OVER.
05 FILLER

VALUE "OVER
05 OVER-500-TL
05 FILLER
05 PRECENT-OVER-TL

01 DISTRIBUTION-UNDER.
05 FILLER PIC X<30>

VALUE "UNDER 500 DOLLARS BALANCE
05 UNDER-500-TL
05 FILLER
05 PRECENT-UNDER-TL

01 ACCUMULATORS.
05 TOTAL-YTD-PURCHASES
05 TOTAL-YTD-PAYMENTS
05 TOTAL-BALANCE
05 OVER-500
05 UNOER-500

01 PAGE-CONTROL.
05 PAGE-COUNT
05 LINE-COUNT
05 PAGE-SIZE

PROCEDURE DIVISION.
START-HERE.

DISPLAY SPACE UPON CRT.
PERFORM INITIALIZE-VALUES.
PERFORM OPEN-FILES.
PERFORM READ-RECORD.
PERFORM PROCESS-REPORT UNTIL FLAG * "STOP".
PERFORM PRINT-TOTALS.
PERFORM PRINT-PRECENT.
PERFORM CLOSE-FILES.
STOP RUN.

INITIALIZE-VALUES.
MOVE "GO " TO FLAG.
MOVE ZEROES TO TOTAL-YTD-PURCHASES.
MOVE ZEROES TO TOTAL-YTD-PAYMENTS.
MOVE ZEROES TO TOTAL-BALANCE.
MOVE ZEROES TO UNOER-500.
MOVE ZEROES TO OVER-500.
MOVE 1 TO PAGE-COUNT.
MOVE 999 TO LINE-COUNT.
MOVE 20 TO PAGE-SIZE.

PIC ZZ.ZZZ.99.
PIC X(4).
PIC ZZZ.99.

PIC S9(6)V99.
PIC S9(6)V99.
PIC S9(9)V99.
PIC S9(9)V99.
PIC S9(9)V99.

PIC 999.
PIC 999.
PIC 999.

PIC X(30)
500 DOLLARS BALANCE ".

PIC ZZ.ZZZ.99.
PIC X(4).
PIC ZZZ.99.

PIC X(32).
PIC X(07)

PIC X(3).
PIC X(07)

www.manaraa.com

198

PROCESS-REPORT.
IF LINE-COUNT > PAGE-SIZE

PERFORM PROCESS-HEADERS.
PERFORM MOVE-DATA.
PERFORM ACCUMULATE-TOTALS.
PERFORM DISTRIBUTION.
PERFORM WRITE-RECORD.
PERFORM TOTAL-LINES.
PERFORM READ-RECORD.

PROCESS-HEADERS.
MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
URITE PRINT-RECORD FROM HEADER-L1NE-1 AFTER ADVANCING PAGE.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
URITE PRINT-RECORO FROM HEADER-LINE-2 AFTER ADVANCING 1.
ADD 1 TO PAGE-COUNT.
MOVE ZEROES TO LINE-COUNT.

PRINT-TOTALS.
MOVE TOTAL-BALANCE TO VENDOR-BALANCE-TL.
MOVE TOTAL-YTD-PURCHASES TO VENDOR-YTD-PURCHASES-TL.
MOVE TOTAL-YTD-PAYMENTS TO VENDOR-YTD-PAYNENTS-TL.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
URITE PRINT-RECORD FROM TOTAL-LINE AFTER ADVANCING 1.

PRINT-PRECENT.
COMPUTEPRECENT-OVER-TL * OVER-SOO/TOTAL-BALANCE * 100.
COMPUTE PRECENT-UNOER-TL * UNDER-500/T0TAL-BALANCE * 100.
MOVE OVER-500 TO 0VER-500-TL.
MOVE UNOER-500 TO UNDER-500-TL.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
URITE PRINT-RECORD FROM DISTRIBUTION-HEADER-1

AFTER ADVANCING 1.
URITE PRINT-RECORD FROM D1STRIBUTION-HEADER-2

AFTER ADVANCING 1.
URITE PRINT-RECORD FROM LINE-SPACES AFTER ADVANCING 1.
URITE PRINT-RECORD FROM DISTRIBUTION-UNDER

AFTER ADVANCING 1.
URITE PRINT-RECORD FROM DISTRIBUTION-OVER

AFTER ADVANCING 1.

URITE-RECORD.
URITE PRINT-RECORD FROM DETAIL-LINE AFTER ADVANCING 1.

ACCUMULATE-TOTALS.
ADO VENOOR-BALANCE
ADD VENDOR-YTD-PURCHASES
ADD VENDOR-YTD-PAYMENTS

MOVE-DATA.
MOVE VENDOR-NUMBER
MOVE VENDOR-NAME
MOVE VENOOR-ADDRESS
MOVE VENDOR-BALANCE
MOVE VENDOR-YTD-PURCHASE!
MOVE VENDOR-YTD-PAYMENTS

DISTRIBUTION.
IF VENDOR-BALANCE >* 500

ADO VENDOR-BALANCE TO OVER-500
ELSE

ADO VENDOR-BALANCE TO TOTAL-BALANCE
ADD VENDOR-BALANCE TO UNDER-500.

TOTAL-LINES.
ADD 1 TO LINE-COUNT.

READ-RECORD.
READ INPUT-FILE INTO VENDOR-INFORMATION

AT ENO MOVE "STOP1* TO FLAG.

TO TOTAL-BALANCE.
TO TOTAL-YTD-PURCHASES.
TO TOTAL-YTD-PAYMENTS.

TO VENDOR-NUMBER-DL.
TO VENDOR-NAME-DL.
TO VENDOR-ADDRESS-DL.
TO VENDOR-BALANCE-DL.
TO VENDOR-YTD-PURCHASES-DL.
TO VENDOR-YTD-PAYMENTS-DL.

www.manaraa.com

OPEN-FILES.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT PRINT-FILE.

CLOSE-FILES.
CLOSE INPUT-FILE

PRINT-FILE.

www.manaraa.com

200

APPENDIX I

BASIC PROGRAM DEBUGGING TEST
DIRECTIONS:
This part of the exam requires you to locate and
correct various programming logic errors in a BASIC
program. At the beginning of this debugging test, your
instructor will distribute a floppy disk containing
programs and data files, program documentation and a
answer sheet to you. The floppy disk will contain:

1. the BASIC source code for each program, and
2. an input data file to be used by the program.

Each program will be accompanied by the following
documentation:

1. a printed copy of the program,
2. a printed copy of the input data file,
3. a description of the program requirements,
4. a description of the program logic error,
5. the current, incorrect printed outputs of the

program, and
6. the required, correct printed outputs of the

program.
Each of the BASIC source programs will contain one

or more logic errors. Each logic error will cause the
program to produce incorrect outputs, or results. None
of the programs will contain any syntax or execution
errors. None of the programs will contain a misspelled
variable name. All programs will execute, but will
produce incorrect results.

For each program, you are to locate each program
logic error and write a description of the cause of the
error on your answer sheet. Then you are required to
use the computer to edit and execute the program until
the program will produce the desired outputs, or
results. Your test grade will based upon your ability:

1. to locate and correctly describe the logic
error on your answer sheet, and
2. to correct the logic error and successfully
execute the program from your disk to produce the
correct results.

www.manaraa.com

201
You may use and write on any of the printed

documentation provided with your test. You also may use
the computer to help you locate and find the error. An
answer sheet will be provided so that you may describe
the cause of program logic error and to list the
debugging tools that you used to find and/or correct
the error.

At the beginning of the test you will be given the
program documentation and a disk containing all of the
test programs and data files. When you complete the
debugging requirements for each program, hold up your
hand and a test administrator will collect your answer
sheet. At that point, you may continue working on the
next program. You may only work on one program at a
time. Once you hand in an answer sheet, vou wav NOT
edit or change a previous test program on vour disk!
Any program that is edited or changed after the answer
sheet has been handed into the test administrator will
receive zero points. However, if you are stuck on a particular program, you are encouraged to proceed to
the next test program.

You will be limited to a maximum of one hour and
twenty minutes to take the exam. At the end of the exam
the instructor will collect your disk and any remaining
answer sheets and program documentation.

www.manaraa.com

202
PROGRAM l Program Name: PR0G1.BAS
PROGRAM REQUIREMENTS
This program will input a vendor data file, which
contains the vendor's name, background information,
current balance and Y.T.D. information. A traditional
report should be prepared, which should include report
headers, detail lines and total lines. Financial
totals for all vendors should be accumulated for the
current balance, Y.T.D Purchases and Y.T.D. Payments
and a final total line should be printed at the end of
the report.
The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The report totals printed on the total line
are incorrect. You are to find the location of the
logic error that causes the incorrect report totals and
correct the program so that the correct report totals
are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

203
Pat* fil» for Program it VENPORB.DAT
Record Layout
Field Name Data Type
Vendor Name String
Vendor Address String
Current Balance String
YTD Purchases String
YTD Payments String
"Standish","23".“BOX 13455 New York, NY 23157","345.60","100.","197.84"
"MacMi11ian","19","745 8th Ave Alberta, NM 63562","67.98","4500.","89.33"
"J. Smith","934","1 Barnes St. Pah, PA 15234","9.60",".89","2340."
"Dollars.”,"9452","23 Fast Blvd. Sands, CA 65357","889.02","144.56","89.03"

Corrat-Prarg Qwtwft
VENDOR REPORT PAGE: 1

VEN.# VENDOR NAME ADDRESS YTD PORCH YTD PMTS BALANCE

23
19
934
9452

Standish
MacMiIlian
J. Smith
Dollars

BOX 13455 New York,
745 8th Ave Alberta
1 Barnes ST. Pgh, PA
23 Fast Blvd. Sands,

NY 23157
, NM 63562
15234
CA 65357

100.00
4,500.00

.89
144.56

197.84
89.33

2,340.00
89.03

345.60
67.98
9.60

889.02

VENDOR REPORT TOTALS 4,745.45 2,716.20 1,312.20

Incorrect Prooram (kitcut

VENDOR REPORT PAGE: 1

VEN.# VENDOR NAME ADDRESS YTD PURCH YTD PMTS BALANCE

23
19
934
9452

Standish
MacMiIlian
J. Smith
Dollars

BOX 13455 New York,
745 8th Ave Alberta
1 Barnes ST. Pgh, PA
23 Fast Blvd. Sands,

NY 23157
, NM 63562
15234
CA 65357

100.00
4,500.00

.89
144.56

197.84
89.33

2,340.00
89.03

345.60
67.98
9.60

889.02

VENDOR REPORT TOTALS 144.56 89.03 889.02

www.manaraa.com

204
SOURCE PROGRAM 1

DECLARE SUB COUNTLINES (LINE.COUNT!)
DECLARE SUB DOHEADERS (LINE.COUNT!, PAGE.COUNTI.PAGE.SIZE I)
DECLARE SUB OPENIT ()
DECLARE SUB READREC (VENDOR.NAMES, VENDOR.NOS,

VENDOR.ADORESSS,VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS)

DECLARE SUB ACCUMULATE (VENDOR.BALANCES, YTD.PURCHASES*,
YTD.PAYMENTSS, TOTAL.BALANCE!,
TOTALPAYMENTSI.TOTAL.PURCHASESI)

DECLARE SUB DETAILLINE (VENDOR.NAMES, VENDOR.NOS,
VENDOR.ADDRESS*, VENDOR.BALANCES,

YTD.PURCHASES*, YTD.PAYMENTSS)
DECLARE SUB FINALTOTAL (TOTAL.BALANCE I, TOTAL.PAYMENTSI,

TOTAL.PURCHASESI)
DECLARE SUB CLOSEIT ()

1 TEST QUESTION : PROGRAM 1
LINE.COUNT * 999: PAGE.COUNT > 1: PAGE.SIZE • 20
TOTAL.BALANCE = 0: TOTAL.PURCHASES = 0: TOTAL.PAYMENTS = 0
CALL OPENIT
DO WHILE NOT E0F(1)

IF LINE.COUNT > PAGE.SIZE THEN
CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)

END IF
CALL READREC (VENDOR.NAMES, VENDOR.NOS, VENOOR.ADORESSS, VENDOR.BALANCES,

YTD.PURCHASES*, YTD.PAYMENTSS)
CALL DETAILLINE (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADORESSS, VENDOR.BALANCES,

YTD.PURCHASES*, YTD.PAYMENTSS)
CALL COUNTLINES (LINE.COUNT)

LOOP
CALL ACCUMULATE(VENDOR.BALANCES, YTO.PURCHASES*,YTD.PAYMENTS*,

TOTAL-BALANCE, TOTAL.PAYMENTS, TOTAL.PURCHASES)
CALL FINALTOTAL(TOTAL.BALANCE, TOTAL.PAYMENTS, TOTAL.PURCHASES)
CALL CLOSEIT
END

SUB ACCUMULATE (VENDOR-BALANCE*, YTD.PURCHASES*, YTD.PAYMENTSS, TOTAL.BALANCE,
TOTAL.PAYMENTS, TOTAL.PURCHASES)

TOTAL.BALANCE * TOTAL.BALANCE + VAL(VENDOR.BALANCES)
TOTAL.PAYMENTS * TOTAL.PAYMENTS + VAL(YTD.PAYMENTS*)
TOTAL.PURCHASES ■ TOTAL.PURCHASES + VAL(YTD.PURCHASES*)

END SUB

SUB CLOSEIT
CLOSE (1)

END SUB

www.manaraa.com

205

SUB COUNTLINES (LIME.COUMT)
LINE.COUNT - LINE.COUNT ♦ 1

END SUB

SUB DETAILLINE (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS)

FLINE1S ■ "MHtM \ \ \ \ MMM MMM MM MMM MMM MM MMM Juut MM"lilt I# W W W W \ \ \ \ M V | W W W «W W W W W f W W W a W W W W W | a 9^W

PRINT USING FL1NE1S; VAL(VENDOR.NOS), VENDOR.NAMES, VENDOR.ADDRESSS,
VAL(YTD.PURCHASESS), VAL(YTD.PAYMENTSS), VAL(VEN00R.BALANCES)

END SUB

SUB DOHEADERS (LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
CLS
PRINT TABOO); "VENDOR REPORT"; TAB(72); "PAGE :"; PAGE.COUNT
PRINT
PRINT "VENN"; TAB(6); "VENDOR NAME"; TABOO); "ADDRESS"; TAB(50);
PRINT "YTD PURCH"; TAB(62); "YTD PMTS"; TAB(74); "BALANCE"
PRINT "_____ "; TAB(6); "___________ "; TAB(20); STRINGS(28, " "); TABOO);
PRINT " TAB(62): » ~ "; TAB(74); «_______ "
LINE.COUNT - 6
PAGE.COUNT * PAGE.COUNT ♦ 1

END SUB

SUB FINALTOTAL (TOTAL.BALANCE, TOTAL.PAYMENTS, TOTAL.PURCHASES)

FLINE1S »
" VENDOR REPORT TOTALS ###,###.## «##,###.## ««#,###.##»
PRINT
PRINT USING FLINE1S; TOTAL.PURCHASES, TOTAL.PAYMENTS, TOTAL.BALANCE

END SUB

SUB OPENIT
OPEN "VENDORB.DAT" FOR INPUT AS #1
END SUB

SUB READREC (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS)

INPUT #1, VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS

END SUB

www.manaraa.com

206
PROGRAM 2 Program Name: PR0G2.BAS
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A traditional
report should be prepared, which should include report
headers, detail lines and total lines reporting the
average student Q.P.A. Each detail line should report
the individual student's Q.P.A. An individual student's
Q.P.A. is calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. =--------------------------

STUDENT CREDITS TO DATE
Total student quality points and total student credits
to date should be accumulated for all students and the
average student Q.P.A. should be calculated by using
the following formula and reported on the final total
line.

AVERAGE TOTAL STUDENT QUALITY POINTS
STUDENT Q.P.A. = ------------------------------

TOTAL STUDENT CREDITS TO DATE
The input record layout and correct report output are
provided on the next page.
DESCRIPTION 07 THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The individual student Q.P.A. is incorrect,
but the average student Q.P.A. is correct. You are to
find the location of the logic error that causes the
incorrect student Q.P.A. and correct the program so
that the correct report totals are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

Input Data file for Program 2: STUDENTS.DAT
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

"Mary Jones","14","40","10"
"Doug Smith","21","30","15"
"Adam Upp","20","20","12"
"Bart Simpson","7","30","10"

Correct Program Output

PAGE: 1

STUDENT QPA

4.00
2.00
1.66
3.00

2.55

PAGE: 1

STUDENT QPA

0.00
4.00
2.00
1.66

STUDENT QPA REPORT

STUD. # STUDENT NAME CREDITS EARNED QUALITY POINTS

14 Mary Jones 10 40
21 Doug Smith 15 30
20 Adam Upp 12 20
7 Bart Simpson 10 30

AVERAGE STUDENT QPA

Incorrect Program Output

STUDENT QPA REPORT

STUD. * STUDENT NAME CREDITS EARNED QUALITY POINTS

14 Mary Jones 10 40
21 Doug Smith 15 30
20 Adam Upp 12 20
7 Bart Simpson 10 30

Data Type
String
String
String
String

AVERAGE STUDENT QPA 2.55

www.manaraa.com

208
SOURCE PROGRAM TUO

DECLARE SUB COUNTLINES (LINE.COUNT))
DECLARE SUB DOHEADERS (LINE.COUNT!, PAGE.COUNT!, PAGE.SIZE!)
DECLARE SUB OPENIT ()
DECLARE SUB READREC (STUDENT.NAMES, STUDENT.NOS, QUALITY.POINTSS,

CREDITS.TO.DATES)
DECLARE SUB ACCUMULATE (QUALITY.POINTSS, CREDITS.TO.DATES, TOTAL.0.POINTS!,

TOTAL.CREDITS!)
DECLARE SUB DETAILLINE (STUDENT.NAMES, STUDENT.NOS, QUALITY.POINTSS,

CREDITS.TO.DATES, QPA!)
DECLARE SUB FINALTOTAL (TOTAL.0.POINTS!, TOTAL.CREDITS!)
DECLARE SUB CLOSEIT ()
DECLARE SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA!)

1 TEST QUESTION : PROGRAM 2
LINE.COUNT * 999: PAGE.COUNT ■ 1: PAGE.SIZE ■ 20
TOTAL.Q.POINTS » 0: TOTAL.CREDITS * 0
CALL OPENIT
DO WHILE NOT E0F(1)

IF LINE.COUNT > PAGE.SIZE THEN
CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)

END IF
CALL READREC (STUDENT.NAMES, STUDENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
CALL ACCUMULATE (QUALITY.POINTSS, CREDITS.TO.DATES, TOTAL.Q.POINTS,

TOTAL.CREDITS)
CALL DETAILLINE (STUDENT.NAMES, STUDENT.NOS, QUALITY.POINTSS,

CREDITS.TO.DATES, QPA)
CALL CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
CALL COUNTLINES (LINE.COUNT)

LOOP
CALL FINALTOTAL (TOTAL.Q.POINTS, TOTAL.CREDITS)
CALL CLOSEIT
END

SUB ACCUMULATE (QUALITY.POINTSS, CREDITS.TO.DATES, TOTAL.Q.POINTS,
TOTAL.CREDITS)

TOTAL.Q.POINTS > TOTAL.Q.POINTS + VAL(QUALITY.POINTSS)
TOTAL.CREDITS * TOTAL.CREDITS ♦ VAL(CREDITS.TO.DATES)

END SUB

SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA)

QPA * VAL(QUALITY.POINTSS) / VAKCREDITS.TO.DATES)

END SUB

SUB CLOSEIT
CLOSE (1)

END SUB

www.manaraa.com

SUB COUNTLINES (LINE.COUNT)
LINE.COUNT ■ LINE.COUNT + 1

END SUB

SUB DETAILLINE (STUDENT.NANES, STUDENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES,
QPA)

flineis » ■#### \ \ mu mu #
PRINT USING FLINEIS; VAL(STUDENT.NOS), STUDENT.NAMES, VAL(QUALITY.POINTSS),

VAL(CREDITS.TO.DATES), QPA
END SUB

SUB DONEADERS (LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
CLS
PRINT TAB(30); "STUDENT QPA REPORT"; TAB(70); "PAGE :"; PAGE.COUNT
PRINT
PRINT "STUD.#"; TABOO); "STUDENT NAME"; TAB(35); "CREDITS EARNED"; TABOO)
PRINT "QUALITY POINTS"; TAB(66); "STUDENT Q.P.A."
PRINT "______ "; TABOO); " "; TAB(35); "______________ "; TAB(50)
PRINT » "; TAB(66): " "
LINE.COUNT > 0
PAGE.COUNT x PAGE.COUNT + 1

END SUB

SUB FINALTOTAL (TOTAL.Q.POINTS, TOTAL.CREDITS)

AVERAGE.QPA = TOTAL.Q.POINTS / TOTAL.CREDITS
FLINE1S - " AVERGAGE QPA ###.##"
PRINT
PRINT USING FLINE1S; AVERAGE.QPA

END SUB

SUB OPENIT
OPEN "STUDENTB.DAT" FOR INPUT AS #1
END SUB

SUB READREC (STUOENT.NAMES, STUDENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
INPUT #1, STUOENT.NAMES. STUDENT.NOS, OUALITY.POINTSS, CREDITS.TO.DATES

END SUB

www.manaraa.com

210

program 3 Program Name: PROG3.BAS
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A high/low
analysis report should be prepared, which should
include report headers, detail lines and final report
lines reporting the name of the student and their
Q.P.A., who received either the highest or the lowest
Q.P.A. Each detail line should report the individual
student's Q.P.A. An individual student's
Q.P.A. is calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. = -------------------------

STUDENT CREDITS TO DATE

The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The analysis lines provided at the end of the
student report, which lists the student with the
highest and lowest Q.P.A.. are incorrect. You are to
find the location of the logic error that causes the
program to report the incorrect highest Q.P.A. and
lowest Q.P.A.. You are to correct the program so that
the correct highest and lowest Q.P.A. with
corresponding student's name are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

211
Input Data file for Program 3: 8TPDENTB.DAT
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

Data Type
String
String
String
String

"Mary Jones", "14","40","10"
"Doug Smith","21","3 0","15"
"Adam Upp","20","20","12"
"Bart Simpson","7","3 0","10"
Correct Progr— (Xjtput

STUDENT QPA REPORT

STUD. # STUDENT NAME CREDITS EARNED

142120
7

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

10
15
12
10

Mary Jones
Adam Upp

HAS THE HIGHEST 0PA OF 4.00
HAS THE LOWEST QPA OF 1.67

Incorrect Program Output

STUD. # STUDENT NAME

STUDENT QPA REPORT

CREDITS EARNED

14
21
20
7

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

10
15
12
10

QUALITY POINTS

40
30
20
30

QUALITY POINTS

40
30
20
30

PAGE: 1

STUDENT QPA

4.00
2.00
1.66
3.00

PAGE: 1

STUDENT QPA

4.00
2.00
1.66
3.00

Bart Simpson HAS THE HIGHEST QPA OF 3.00
Adam Upp HAS THE LOWEST QPA OF 3.00

www.manaraa.com

212
SOURCE PROGRAM 3

DECLARE SUB FINDHI (QPAI, HIGH.OPAI, HIGH.STUDENTS, STUDENT.NAMES)
DECLARE SUB F1NDLOU (QPAI, LOU.QPAI, LOU.STUDENTS, STUDENT.NAMES)
DECLARE SUB PRINTHIGH (HIGH.OPAI, HIGH.STUDENTS)
DECLARE SUB PRINTLOW (LOW.QPAI, LOU.STUDENTS)
DECLARE SUB COUNTLINES (LINE.COUNTI)
DECLARE SUB DOHEADERS (LINE.COUNTI, PAGE.COUNTI, PAGE.SIZED
DECLARE SUB OPENIT ()
DECLARE SUB READREC (STUOENT.NAMES, STUDENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
DECLARE SUB DETAILLINE (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES,
QPAI)
DECLARE SUB FINALTOTAL (TOTAL.Q.POINTSI, TOTAL.CREDITSI)
DECLARE SUB CLOSEIT ()
DECLARE SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPAI)

1 TEST QUESTION : PROGRAM 3
LINE.COUNT ■ 999: PAGE.COUNT » 1: PAGE.SIZE - 20
HIGH.QPA - 0: LOU.QPA ■ 999

CALL OPENIT
DO WHILE NOT EOF(1)

IF LINE.COUNT > PAGE.SIZE THEN
CALL DOHEADERSUINE.COUNT, PAGE.COUNT, PAGE.SIZE)

END IF
CALL READREC(STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
CALL CALCULATEQPA(QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
CALL DETA1LLINE(STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
CALL COUNTLINES(LINE.COUNT)

LOOP
CALL FINDHI(QPA, HIGH.QPA, HIGH.STUDENTS, STUDENT.NAMES)
CALL FINDLOU(QPA, LOU.QPA, LOU.STUDENTS, STUDENT.NAMES)
CALL PRINTHIGH(HIGH.QPA, HIGH.STUDENTS)
CALL PRINTLOU(LOW.QPA, LOU.STUDENTS)
CALL CLOSEIT
ENO

SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
QPA > VAL(QUALITY.POINTSS) / VAL(CREDITS.TO.DATES)

END SUB

SUB CLOSEIT
CLOSE (1)

END SUB

SUB COUNTLINES (LINE.COUNT)
LINE.COUNT * LINE.COUNT * 1

END SUB

SUB DETAILLINE (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
FLINEIS * "#### \ \ ### ### #.##"
PRINT USING FLINE1S; VAL(STUDENT.NOS), STUDENT.NAMES, VAL(QUALITY.POINTSS),

VAL(CREDITS.TO.DATES), QPA
END SUB

SUB DOHEADERS (LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
CLS
PRINT TABOO); "STUDENT QPA REPORT"; TAB(70); "PAGE :"; PAGE.COUNT
PRINT
PRINT "STUD.#"; TAB(10); "STUDENT NAME"; TAB(35); "CREDITS EARNED"; TAB(SO);
PRINT "QUALITY POINTS"; TAB(66); "STUDENT Q.P.A."
PRINT "______ "; TABOO); "____________ "; TAB(35); "______________ «; TAB(50);
PRINT « "; TAB(66); "______________ "
LINE.COUNT - 0
PAGE.COUNT - PAGE.COUNT + 1

END SUB

www.manaraa.com

213

SUB FINDHI (QPA, HIGH.QPA, HIGH.STUDENTS, STUDENT.NAMES)

IF HIGH.QPA < QPA THEN
HIGH.QPA * QPA
HIGH.STUDENTS « STUDENT.NAMES

END IF

END SUB

SUB FINOLOW (QPA, LOU.QPA, LOU.STUDENTS, STUDENT.NAMES)

IF LOU.QPA > QPA THEN
LOU.QPA * QPA
LOU.STUDENTS * STUDENT.NAMES

END IF

END SUB

SUB OPENIT
OPEN "STUDENTB.DAT" FOR INPUT AS #1
END SUB

SUB PRINTHIGH (HIGH.QPA, HIGH.STUDENTS)
PRINT
H1S * » \ \ HAS THE HIGHEST QPA OF #.##••
PRINT USING H1S; HIGH.STUDENTS, HIGH.QPA

END SUB

SUB PRINTLOU (LOU.QPA, LOU.STUDENTS)

LIS * " \ \ HAS THE LOWEST OPA OF #.##«
PRINT USING L1S; LOU.STUDENTS, LOU.QPA

END SUB

SUB READREC (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
INPUT #1, STUOENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES

END SUB

www.manaraa.com

214
PROGRAM 4 Program Name: PR0G4.BAS
PROGRAM DESCRIPTION
This program will input a student data file, which
contains the student's name, credits earned to date and
the total quality points earned to date. A high/low
analysis report should be prepared, which should
include report headers, detail lines and final report
lines reporting the name of the student and their
Q.P.A., who received either the highest or the lowest
Q.P.A. Each detail line should report the individual
student's Q.P.A. An individual student's
Q.P.A. is calculated by the following formula:

STUDENT QUALITY POINTS
STUDENT Q.P.A. = -------------------------

STUDENT CREDITS TO DATE

The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The analysis lines provided at the end of the
student report, which lists the student with the
highest and lowest Q.P.A.. are incorrect. You are to
find the location of the logic error that causes the
program to report the incorrect highest Q.P.A. and
lowest Q.P.A.. You are to correct the program so that
the correct highest and lowest Q.P.A. with
corresponding student's name are provided.
There are TWO logic errors in this program.

The complete program listing follows.

www.manaraa.com

215
Input .Data file for Program 4: 8TUDBHTB.DAT
Record Layout
Field Name
Student Name
Student Number
Quality Points
Total Credits

Data Type
String
String
String
String

"Mary Jones","14","40","10"
"Doug Smith","21","30","15"
"Adam Upp","20","20", "12"
"Bart Simpson","7","30","10"
Correct Program ftitput

STUDENT QPA REPORT

STUD. * STUDENT NAME CREDITS EARNED

14
21
20
7

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

10
15
12
10

Mary Jones
Adam Upp

HAS THE HIGHEST QPA OF 4.00
HAS THE L0UEST QPA OF 1.67

Incorrect Prooraai Output

STUD. * STUDENT NAME

STUDENT QPA REPORT

CREDITS EARNED

14
21
20
7

Mary Jones
Doug Smith
Adam Upp
Bart Simpson

10
15
12
10

QUALITY POINTS

40
30
20
30

QUALITY POINTS

40
30
20
30

PAGE: 1

STUDENT QPA

4.00
2.00
1.66
3.00

PAGE: 1

STUDENT QPA

4.00
2.00
1.66
3.00

HAS THE HIGHEST QPA OF 0.00
Adam Upp HAS THE LOWEST QPA OF 0.00

www.manaraa.com

216
SOURCE PROGRAM 4

DECLARE SUB FINDHI (QPAI, HIGH.OPAI, HIGH.STUDENTS, STUDENT.NAMES)
DECLARE SUB FINDLOW (QPAI, LOU.QPA!, LOU.STUDENTS, STUDENT.NAMES)
DECLARE SUB PRINTHIGH (HIGH.OPAI, HIGH.STUDENTS)
DECLARE SUB PRINTLOU (LOW.QPAI, LOW.STUDENTS)
DECLARE SUB COUNTLINES (LINE.COUNTI)
DECLARE SUB DOHEADERS (LINE.COUNTI, PAGE.COUNT!, PAGE.SIZE!)
DECLARE SUB OPENIT ()
DECLARE SUB REAOREC (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
DECLARE SUB DETAILLINE (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES,
QPAI)
DECLARE SUB FINALTOTAL (TOTAL.Q.POINTSI, TOTAL.CREDITSI)
DECLARE SUB CLOSEIT ()
DECLARE SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA!)

1 TEST QUESTION : PROGRAM 4
LINE.COUNT » 999: PAGE.COUNT * 1: PAGE.SIZE - 20
HIGH.QPA - 0: LOU.QPA * 999
CALL OPENIT
DO WHILE NOT E0F(1)

IF LINE.COUNT > PAGE.SIZE THEN
CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)

END IF
CALL READREC(STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
CALL FINDHKQPA, HIGH.QPA, HIGH.STUOENTS, STUDENT.NAMES)
CALL CALCULATEQPA(QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
CALL FINDLOU(QPA, LOU.QPA, LOU.STUDENTS, STUDENT.NAMES)
CALL DETAILLINE(STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
CALL COUNTLINES(LINE.COUNT)

LOOP
CALL PRINTHIGH(HIGH.QPA, HIGH.STUOENTS)
CALL PRINTLOW(LOU.QPA, LOU.STUDENTS)
CALL CLOSEIT
END

SUB CALCULATEQPA (QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
QPA > VAL(QUALITY.POINTSS) / VAL(CREDITS.TO.DATES)

END SUB

SUB CLOSEIT
CLOSE (1)

END SUB

SUB COUNTLINES (LINE.COUNT)
LINE.COUNT > LINE.COUNT + 1

END SUB

SUB DETAILLINE (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES, QPA)
FLINE1S b h w h u i \ v MMM MMM M AN"
PRINT USING FLINE1S; VAL(STUDENT.NOS), STUDENT.NAMES, VAL(QUALITY.POINTSS),

VAL(CREDITS.TO.DATES), QPA
END SUB

SUB DOHEADERS (LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
CLS
PRINT TABOO); "STUDENT QPA REPORT"; TAB(70); "PAGE :"; PAGE.COUNT
PRINT
PRINT "STUD.#*1; TABOO); "STUDENT NAME"; TAB(35); "CREDITS EARNED"; TABOO);
PRINT "QUALITY POINTS"; TAB(66); "STUDENT Q.P.A."
PRINT "______ "; TABOO); " "; TAB(35);_"______________ "; TABOO);
PRINT " "; TA8(66); » «
LINE.COUNT " 0: PAGE.COUNT " PAGE.COUNT ♦ 1

END SUB

SUB FINDLOW (QPA, LOU.QPA, LOU.STUDENTS, STUDENT.NAMES)

IF LOU.QPA > QPA THEN
LOU.QPA " QPA
LOW.STUDENTS « STUDENT.NAMES

END IF
END SUB

www.manaraa.com

SUB FINDHI (OPA, HIGH.QPA, HIGH.STUDENTS, STUDENT.NAMES)

IF HIGH.QPA > QPA THEN
HIGH.QPA ■ QPA
HIGH.STUDENTS > STUDENT.NAMES

END IF

END SUB

SUB OPENIT
OPEN "STUDENTB.DAT" FOB INPUT AS #1
END SUB

SUB PRINTHIGH (HIGH.QPA, HIGH.STUOENTS)
PRINT
HIS * " \ \ HAS THE HIGHEST QPA OF #.##"
PRINT USING H1S; HIGH.STUOENTS, HIGH.QPA

END SUB

SUB PRINTLOU (LOU.QPA, LOU.STUDENTS)

L1S ■ » \ \ HAS THE LOUEST QPA OF #.##“
PRINT USING L1S; LOU.STUDENTS, LOU.QPA

END SUB

SUB READREC (STUDENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES)
INPUT #1, STUOENT.NAMES, STUOENT.NOS, QUALITY.POINTSS, CREDITS.TO.DATES

END SUB

www.manaraa.com

218
program 5 Program Name: PROG5.BAS
PROGRAM REQUIREMENTS
This program will input a vendor data file, which
contains the vendor's name, background information,
current balance and Y.T.D. information. A traditional
report should be prepared, which should include report
headers, detail lines and total lines. Financial
totals for all vendors should be accumulated for the
current balance, Y.T.D Purchases and Y.T.D. Payments
and a final total line should be printed at the end of
the report. Following the final total line a
distribution analysis report should appear, listing the
dollar amount and percentage of the vendor's
outstanding balance "under 500 dollars" and "over 500
dollars" due.
The input record layout and correct report output are
provided on the next page.
DESCRIPTION OF THE DEBUGGING PROBLEM
On the next page, the current report output is
provided. The total balance printed on the total line
axe incorrect. In addition, the results of the
distribution analysis are incorrect. You are to find
the location of the logic errors that causes the
incorrect total balance and distribution report and
correct the program so that the correct distribution
report and total balances are provided.
There is only one logic error in this program.
The complete program listing follows.

www.manaraa.com

219
Data file for Program 5i VBNPORB.DAT
Record Layout
Field Name Data Type
Vendor Name String
Vendor Address String
Current Balance String
YTD Purchases String
YTD Payments String
"StandishH,"23","BOX 13455 New York, NT 23157","345.60","100.","197.84"
"MacNillian","19","745 8th Ave Alberta, NM 63562","67.98","4500.","89.33"
"J. Smith","934","1 Barnes St. Pgh, PA 15234","9.60",".89","2340."
"Dollars.","9452","23 Fast Blvd. Sands, CA 65357","889.02","144.56","89.03"

Correct Program Output

VENDOR REPORT PAGE: 1
VEN.# VENDOR NAME ADDRESS YTD PURCH YTD PMTS BALANCE

23 Standish BOX 13455 New York,
19 MacMillian 745 8th Ave Alberta
934 J. Smith 1 Barnes ST. Pgh, PA
9452 Dollars 23 Fast Blvd. Sands,

NY 23157
, NM 63562
15234
CA 65357

100.00
4,500.00

.89
144.56

197.84
89.33

2,340.00
89.03

345.60
67.98
9.60

889.02

VENDOR REPORT TOTALS 4,745.45 2,716.20 1,312.20

DISTRIBUTION ANALYSIS REPORT
DOLLARS

UNDER 500 DOLLARS BALANCE 423.18
OVER 500 DOLLARS BALANCE 889.02

PRECENT
32.25X
67.75X

Incorrect Program Oitout

VENDOR REPORT PAGE: 1

VEN.* VENDOR NAME ADDRESS YTD PURCH YTD PMTS BALANCE

23 Standish BOX 13455 New York,
19 MacMillian 745 8th Ave Alberta
934 J. Smith 1 Barnes ST. Pgh, PA
9452 Dollars 23 Fast Blvd. Sands,

NY 23157
, NM 63562
15234
CA 65357

100.00
4,500.00

.89
144.56

197.84
89.33

2,340.00
89.03

345.60
67.98
9.60

889.02

VENDOR REPORT TOTALS 4,745.45 2,716.99 1,735.38

DISTRIBUTION ANALYSIS REPORT
DOLLARS

UNDER 500 DOLLARS BALANCE 423.18
OVER 500 DOLLARS BALANCE 889.02

PRECENT
24.39X
51.23X

www.manaraa.com

220
SOURCE PROGRAM 5

DECLARE SUB DISTRIBUTION (VENDOR.BALANCES, TOTAL.BALANCE I, UN0ER.500I, OVER.5001)
DECLARE SUB PRINTPRECENT (TOTAL.BALANCE I, OVER.5001, UNDER.5001)
DECLARE SUB COUNTLINES (LINE.COUNTI)
DECLARE SUB DOHEADERS (LINE.COUNTI, PAGE.COUNT!, PAGE.SIZED
DECLARE SUB OPENIT ()
DECLARE SUB READREC (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS)
DECLARE SUB ACCUMULATE (VENDOR.BALANCES, YTD.PURCHASESS, YTD.PAYMENTSS, TOTAL.BALANCEI,
TOTALPAYMENTSI TOTAL•PURCHASESI)
DECLARE SUB DETAILLINE (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,
YTD.PURCHASESS, YTD.PAYMENTSS)
DECLARE SUB FINALTOTAL {TOTAL.BALANCEI, TOTAL.PAYMENTSI, TOTAL.PURCHASESI)
DECLARE SUB CLOSEIT ()

1 TEST QUESTION : PROGRAM 1
LINE.COUNT * 999: PAGE.COUNT « 1: PAGE.SIZE ■ 20
TOTAL.BALANCE * 0: TOTAL.PURCHASES * 0: TOTAL.PAYMENTS * 0
CALL OPENIT
DO WHILE NOT EOF(1)

IF LINE.COUNT > PAGE.SIZE THEN
CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)

END IF
CALL READREC(VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES, YTD.PURCHASESS,

YTD.PAYMENTSS)
CALL ACCUMULATE(VENDOR.BALANCES, YTD.PURCHASESS, YTD.PAYMENTSS, TOTAL.BALANCE,

TOTAL.PAYMENTS, TOTAL.PURCHASES)
CALL DISTRIBUTION(VENDOR.BALANCES, TOTAL.BALANCE, UNDER.500, OVER.500)
CALL DETAILLINE(VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES,

YTD.PURCHASESS, YTD.PAYMENTSS)
CALL COUNTLINES(LINE.COUNT)

LOOP
CALL FINALTOTAL(TOTAL.BALANCE, TOTAL.PAYMENTS, TOTAL.PURCHASES)
CALL PRINTPRECENT(TOTAL.BALANCE, OVER.500, UNDER.500)
CALL CLOSEIT
END

SUB ACCUMULATE (VENDOR.BALANCES, YTD.PURCHASESS, YTD.PAYMENTSS, TOTAL.BALANCE,
TOTAL.PAYMENTS, TOTAL.PURCHASES)

TOTAL.BALANCE ■ TOTAL.BALANCE + VAL(VENDOR.BALANCES)
TOTAL.PAYMENTS * TOTAL.PAYMENTS ♦ VAL(YTD.PAYMENTSS)
TOTAL.PURCHASES * TOTAL.PURCHASES + VAL(YTD.PURCHASESS)

END SUB

SUB CLOSEIT
CLOSE (1)

END SUB

SUB COUNTLINES (LINE.COUNT)
LINE.COUNT > LINE.COUNT ♦ 1

END SUB

SUB DETAILLINE (VENDOR.NAMES, VENDOR.NOS, VENDOR.AODRESSS, VENDOR.BALANCES, YTD.PURCHASESS,
YTD.PAYMENTSS)

1 12345678901234567890123445678901234567890123456789012345678901234567890
FLINEIS * "#### \ \ \ \ ###,###.## ***,#**.99

###.99"
PRINT USING FLINE1S; VAL(VENDOR.NOS), VENDOR.NAMES, VENDOR.ADDRESSS, VAL(YTD.PURCHASESS),

VAL(YTD.PAYMENTSS), VAL(VENDOR.BALANCES)
END SUB

SUB DISTRIBUTION (VENDOR.BALANCES, TOTAL.BALANCE, UNDER.500, OVER.500)

IF VAL(VENDOR.BALANCES) »« 500 THEN
OVER.500 « OVER.500 * VAL(VENDOR.BALANCES)

ELSE
UNDER.500 * UNDER.500 + VAL(VENDOR.BALANCES)
TOTAL.BALANCE « TOTAL.BALANCE + VAL(VENDOR.BALANCES)

END IF

END SUB

www.manaraa.com

SUB DOHEADERS (LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
CLS
PRINT TAB(30); "VENDOR REPORT"; TAB(70); "PAGE PAGE.COUNT
PRINT
PRINT "VEN#"; TAB(6); "VENDOR NAME"; TAB(20); "ADDRESS"; TA8(50);
PRINT "YTD PURCH"; TAB(62); "YTD PMTS"; TAB(74); "BALANCE"
PRINT "_____"; TAB(6); " "; TAB(20); STRINGS(28, " "); TAB(50);
PRINT "_________ "; TAB(62): " "; TAB(74); "_______ "
LINE.COUNT * 0
PAGE.COUNT > PAGE.COUNT + 1

END SUB

SUB FINALTOTAL (TOTAL.BALANCE, TOTAL.PAYMENTS, TOTAL.PURCHASES)

FLINEIS ■ " VENDOR REPORT TOTALS ###,###.## ###,###.99
MMM MMM 00*i"WW | IflFw I r 7

PRINT
PRINT USING FLINE1S; TOTAL.PURCHASES, TOTAL.PAYMENTS, TOTAL.BALANCE

END SUB

SUB OPENIT
OPEN "VENDORB.DAT" FOR INPUT AS #1
END SUB

SUB PRINTPRECENT (TOTAL.BALANCE, OVER.500, UNDER.500)

PRECENT.UNDER » UNDER.500 / TOTAL.BALANCE • 100
PRECENT.OVER » OVER.500 / TOTAL.BALANCE * 100

PRINT
PRINT "DISTRIBUTION ANALYSIS REPORT"

PRINT
PRINT " DOLLARS PRECENT "
P1S * " UNDER 500 DOLLARS BALANCE ##,###.## ##.## X"
PRINT USING P1S; UNDER.500, PRECENT.UNDER
P1S * " OVER 500 DOLLARS BALANCE ##,###.## ##.## X"
PRINT USING P1S; OVER.500, PRECENT.OVER

END SUB

SUB READREC (VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES, YTD.PURCHASESS
YTD.PAYMENTSS)

INPUT #1, VENDOR.NAMES, VENDOR.NOS, VENDOR.ADDRESSS, VENDOR.BALANCES, YTD.PURCHASESS
YTD.PAYMENTSS
END SUB

www.manaraa.com

222

APPENDIX L
Microfocus's One Variable Interactive Program Debugger

89 PROCEDURE DIVISION.
90 START-HERE.
91 PERFORM INITIALIZE-VALUES.
92 PERFORM OPEN-FILES.
93 PERFORM READ-RECORD.
94 PERFORM PROCESS-REPORT UNTIL FLAG = "STOP".
95 PERFORM ACCUMULATE-TOTALS.
96 PERFORM PRINT-TOTALS.
97 PERFORM CLOSE-FILES.
98 STOP RUN.
99 INITIALIZE-VALUES.
100 MOVE "GO " TO FLAG.
101 MOVE ZEROES TO TOTAL-YTD-PURCHASES.
102 MOVE ZEROES TO TOTAL-YTD-PAYMENTS.
103 MOVE ZEROES TO TOTAL-BALANCE.
104 MOVE 1 TO PAGE-COUNT.
105 MOVE 999 TO LINE-COUNT.
106 MOVE 20 TO PAGE-SIZE.
107 PROCESS-HEADERS.
108 MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
109 WRITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
Animate-DEBUGIE-----------------------Level=01-Speed=5Ins-Caps-
Num-Scroll Fl=help F2=view F3=align F4=exchange F5=where F6=look-up
F9/F10=word-</> Escape Step Go Zoom next-If Perform Reset Break Env
Query Find Locate Text Do 0-9=speed

MicroFocus's Interactive Debugger Command Set
Help screen for... Animate Page 2 of 2
Help0218

F1«hetp Display previous screen nx-Jf Execute until next IF
F2*view Display user screen Perform Set executed perform

level
F3*align Set this line to 3 Reset Reset execution position
F4*exchange Hove to other screen Brk Set/unset break-points
F5-where Find curront position Env Set execution environ.
F6»look-up Set entered line to 3 Ouery Examines data-item
F9»word-left Hove one word to left Find Find next occurrence
F10*word-right Hove one word to right Locate Locate declaration of

item
Escape Leave Animator Text Set screen separator
Step Execute one instruction Do Execute typed COBOL

syntax
Go Execute slowly 0-9 Set default Go speed
Zoom Execute at full speed
Uch Honitor all variables on current line

www.manaraa.com

223

MicroFocus's Interactive Query of a File

142 AT END MOVE "STOP" TO FLAG.
143 OPEN-FILES.
144 OPEN INPUT IMPPT-PILB.
145 OPEN OUTPUT PRINT-FILE.
146 CLOSE-FILES.
147 CLOSE INPUT-FILE
148 PRINT-FILE.

Query: INPUT-FILE-------------------Level=02-Speed=5-Ins-
Caps-Num-Scroll
Fl=help F2=clear F3=hex F4=monitor t 4 =up/down data
F7=containing F8=contained F9=same level
Alt Escape
Open input Last status 00]

MicroFocus's Interactive Querv of a Data Item
103 MOVE 1 TO PAGE-COUNT.
104 MOVE 999 TO LINE-COUNT.
105 MOVE 20 TO PAGB-SIZB.
106 PROCESS-HEADERS
107 MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
108 WRITE PRINT-RECORD FORM HEADER-LINE-1 AFTER ADVANCING PA
109 WRITE PRINT-RECORD FROM HEADER-LINE-2 AFTER ADVANCING 2.
110 ADD 1 TO PAGE-COUNT.
111 MOVE ZEROES TO LINE-COUNT.
112 PRINT-TOTALS.
113 MOVE TOTAL-BALANCE TO VENDOR-BALANCE-TL.
114 MOVE TOTAL-YTD-PURCHASES TO VENDOR-YTD-PURCHASES-TL.
115 MOVE TOTAL-YTD-PAYMENTS TO VENDOR-YTD-PAYMENTS-TL.
116 WRITE PRINT-RECORD FROM TOTAL-LINE AFTER ADVANCING 2.
117 PROCESS-REPORT.
118 IF LINE-COUNT > PAGE-SIZE
119 PERFORM PROCESS-HEADERS.
120 PERFORM MOVE-DATA.
121 PERFORM WRITE-RECORD.
122 PERFORM TOTAL-LINES.
123 PERFORM READ-RECORD.
Query:----PAGE-SIZE---------------------- Level=01-Speed=5-Ins-
Caps-Num-Scrol1
Fl=help F2=clear F3=hex F4=monitor t 4 =up/down data
F7=containing F8=contained F9=same level d Alt Escape
020]

www.manaraa.com

224

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

MicroFocus's Interactive Query of Multiple Data Items
Before the Execution of e Move Statement

MOVE VENDOR-NAME TO VENDOR-NAME-DL.
MOVE VENDOR-ADDRESS
MOVE VENDOR-CITY-STATE-ZIP
MOVE VENDOR-BALANCE
MOVE VENDOR-YTD-PURCHASES
MOVE VENDOR-YTD-PAYMENTS

TOTAL-LINES.
ADD 1 TO LINE-COUNT.

READ-RECORD
READ INPUT-FILE INTO VENDOR-INFORMATION

AT END MOVE "STOP" TO FLAG
OPEN-FILES.

OPEN INPUT INPUT-FILE.

TO VENDOR-ADDRESS-DL.
TO VENDOR-CITY-STATE-ZIP-DL.
TO VENDOR-BALANCE-DL.
TO VENDOR-YTD-PURCHASES-DL.
TO VENDOR-YTD-PAYMENTS-DL.

r—VENDOR-NAME--
Standish, INC.

OPEN OUTPUT PRINT-FILE.
CLOSE-FILES.

CLOSE INPUT-FILE
-INPUT-FILE-
lOpen input

— VENDOR-NAME-DL-

r3[of last status 00
Animate-DEBUGIE-------------Level=03-Speed=5-Ins-Caps-Num-Scroll
Fl=help F2=view F3=align F4=exchange F5=where F6=look-up
Step(Wch) Go Zoom nx-If Perform Reset Brk Env Query Find Locate

After the Execution of a Move Statement
133
134
135
136
137
138
139
140
141
142
14 3
144
145
146
147
148

MOVE VENDOR-NAME
MOVE VENDOR-ADDRESS

TO VENDOR-NAME-DL.
TQ VENPQR-ADDBESS-PLtMOVE VENDOR-CITY-STATE-ZIP

MOVE VENDOR-BALANCE
MOVE VENDOR-YTD-PURCHASES
MOVE VENDOR-YTD-PAYMENTS

TOTAL-LINES.
ADD 1 TO LINE-COUNT.

READ-RECORD
READ INPUT-FILE INTO VENDOR-INFORMATION

AT END MOVE "STOP" TO FLAG
OPEN-FILES.
OPEN INPUT INPUT-FILE.

TO VENDOR-CITY-STATE-ZIP-DL.
TO VENDOR-BALANCE-DL.
TO VENDOR-YTD-PURCHASES-DL.
TO VENDOR-YTD-PAYMENTS-DL.

— VENDOR-NAME--
Standish, INC.

OPEN OUTPUT PRINT-FILE.
CLOSE-FILES.
CLOSE INPUT-FILE

I— INPUT-FILE-
Open input

-VENDOR-NAME-DL-
Standish, INC.

last status 00
Animate-DEBUGIE-------------Level=03-Speed=5-Ins-Caps-Num-Scroll
Fl=help F2=view F3=align F4=exchange F5=where F6=look-up
Step(Wch) Go Zoom nx-If Perform Reset Brk Env Query Find Locate

www.manaraa.com

225

MicroFocus's Structure Chart Interactive Program Debugger

i— Structure-diagram

— 1READ- 1 - PROCESS* r ' ■ACCUMUL PRI
8 RECORD -REPORT ATE- TOT
ESS IMOVE-

DATA
1WRITE-

RECORD
1TOTAL-LINES REAREC

89 PROCEDURE DIVISION.
90 START-HERE.
91 PERFORM INITIALIZE-VALUES. II START-
92 PERFORM OPEN-FILES. || HERE
93 PERFORM READ-RECORD.
94 PERFORM PROCESS-REPORT UN
95 PERFORM ACCUMULATE-TOTALS
96 PERFORM PRINT-TOTALS.
97 PERFORM CLOSE-FILES.
98 STOP RUN.
99INITIALIZE-VALUES.
100 MOVE "GO " TO FLAG.
101 MOVE ZEROES TO TOTAL-YTD-PURCHASES.
102 MOVE ZEROES TO TOTAL-YTD-PAYMENTS.
103 MOVE ZEROES TO TOTAL-BALANCE.
104 MOVE 1 TO PAGE-COUNT.
105 MOVE 999 TO LINE-COUNT.
106 MOVE 20 TO PAGE-SIZE.
107 PROCESS-HEADERS.
108 MOVE PAGE-COUNT TO PAGE-NUMBER-OUT.
109 WRITE PRINT-RECORD FROM HEADER-LINE-1 AFTER ADVANCING PAGE.
Animate-DEBUGIE-----------------Level=01-Speed=5Ins-Caps-Num-Scroll
Fl=help F2=view F3=align F4=exchange F5=where F6=look-up F9/F10=node-
</> Escape Step(Wch) Go Zoom nx-If Perform Reset Brk Env Query Find
Locate Text Do Alt Ctrl Structure being recreated

www.manaraa.com

226

Microsoft's Quick Basic Inertactive Debugger

File Edit View Search Run Debug Calls Fl=Help
DEBUG1E.BAS--------------- 1 t (-

DECLARE SUB COUNTLINES (LINE.COUNT!)
DECLARE SUB DOHEADERS (LINE.COUNT!, PAGE.COUNT!,PAGE.SIZE!)
DECLARE SUB OPENIT ()
DECLARE SUB READREC (VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,
DECLARE SUB ACCUMULATE (VENDOR.BALANCE$, YTD.PURCHASES$,YTD.PAYMEN
DECLARE SUB DETAILLINE (VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,
DECLARE SUB FINALTOTAL (TOTAL.BALANCE!, TOTAL.PAYMENTS!, TOTAL.PU
DECLARE SUB CLOSEIT ()

' TEST QUESTION : PROGRAM 1
LINE.COUNT = 999: PAGE.COUNT = 1: PAGE.SIZE =20
TOTAL.BALANCE = 0: TOTAL.PURCHASES = 0: TOTAL.PAYMENTS = 0
CALL OPENIT
DO WHILE NOT EOF(l)
IF LINE.COUNT > PAGE.SIZE THEN

CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
END IF
CALL READREC(VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,VENDOR.BA

-------------------------- Immediate---------------------------
Main: DEBUG1E.BAS Context: DEBUGIE.BAS C 00015:001

www.manaraa.com

227
Microsoft's Interactive Query and Monitoring of Data Items

File Edit View Search Run Debug Calls Fl=Help
DEBUOIE.BAS VENDOR.NAME$: Standish
READREC VENDOR.MAME$: <Not vatehabla>

DEBUG IE. BAS 1 t |----
DECLARE SUB COUNTLINES (LINE.COUNT!)
DECLARE SUB DOHEADERS (LINE.COUNT!, PAGE.COUNT!,PAGE.SIZE!)
DECLARE SUB OPENIT ()
DECLARE SUB READREC (VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,
DECLARE SUB ACCUMULATE (VENDOR.BALANCE$, YTD.PURCHASES$,YTD.PAYMEN
DECLARE SUB DETAILLINE (VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,
DECLARE SUB FINALTOTAL (TOTAL.BALANCE!, TOTAL.PAYMENTS!, TOTAL.PU
DECLARE SUB CLOSEIT ()

' TEST QUESTION : PROGRAM 1
LINE.COUNT a 999: PAGE.COUNT = 1: PAGE.SIZE =20
TOTAL.BALANCE = 0: TOTAL.PURCHASES = 0: TOTAL.PAYMENTS = 0
CALL OPENIT
DO WHILE NOT EOF(l)
IF LINE.COUNT > PAGE.SIZE THEN

CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
END IF
CALL READREC(VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$,VENDOR.BA

---------------------------Immediate-
Main: DEBUG1E.BAS Context: DEBUG1E.BAS C 00020:004

www.manaraa.com

228

Other, Microsoft1s Quick Basic Debugging Options

File Edit View Search R I Debug I Calls Fl=Help
DEBUG1E.BAS VENDOR.NAME$: S
READREC VENDOR.NAME$: <Not

DECLARE SUB READREC (VENDOR
DECLARE SUB ACCUMULATE (VEN
DECLARE SUB DETAILLINE (VOR
DECLARE SUB FINALTOTAL (TO
DECLARE SUB CLOSEIT ()

'TEST QUESTION : PRO
LINE.COUNT =999: PAGE.CN
TOTAL.BALANCE = 0: TOTAL.P
CALL OPENIT
DO WHILE NOT EOF(l)
IF LINE.COUNT > PAGE.SIZE THEN

CALL DOHEADERS(LINE.COUNT, PAGE.COUNT, PAGE.SIZE)
END IF
CALL READREC(VENDOR.NAME$, BENDOR.NO$, VENDOR.ADDRESS$,
VENDOR.BALANCES, YT

CALL DETAILLINE(VENDOR.NAME$, VENDOR.NO$, VENDOR.ADDRESS$
VENDOR.BALANCE$,

ENDOR.BALANCE
MENTS$,TOTAL.
S$,VENDOR.BAA
TURCHASES!)

Toggle Breakpoint
Clear All Breaks
Set Next Statement

Add Watch...
Watohpoint...
Delete Watch. Delete All Watch..
Trace On
History On

Immediate-

